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Abstract. Knowledge available through Semantic Web representation formalisms
can be missing, i.e. it is not always possible to infer the truth value of an assertion
(due to the Open World Assumption). We propose a method for incrementally in-
ducing terminological (tree-augmented) naı̈ve Bayesian classifiers, which aim at
estimating the probability that an individual belongs to a target concept given its
membership to a learned set of Description Logic concepts. We then evaluate the
impact of employing different methods of handling assertions whose truth value
is unknown, each consistent with a different assumption on the ignorance model.

1 Introduction

Real-world knowledge often involves various degrees of uncertainty. For such reason,
in the context of Semantic Web (SW), difficulties arise when trying to model real-world
domains using purely logical formalisms. The World Wide Web Consortium (W3C),
recognising the need of soundly represent such knowledge, in 2007 created the Uncer-
tainty Reasoning for the World Wide Web Incubator Group 1 (URW3-XG), with the
aim of identifying the requirements for reasoning with and representing the uncertain
knowledge in Web-based information; URW3-XG provided in [13] a number of situ-
ations in which there is a clear need of explicitly represent and reason in presence of
uncertainty. A wide range of approaches to represent and infer with knowledge enriched
with probabilistic information has been proposed: some of them extend knowledge rep-
resentation formalisms actually used in the SW, while others rely on probabilistic en-
richment of Description Logics or logic programming formalisms.

Motivation

The main problem of applying such approaches in real world settings is given by the
fact that they almost always assume the availability of probabilistic information, while
it is hardly known in advance. Having a method that, by exploiting available knowledge
(such as an already designed and populated ontology) is able to extract both the needed
logic and the probabilistic structure, would be of great benefit. During this process, the

1 http://www.w3.org/2005/Incubator/urw3/



Open World Assumption (OWA) must be taken into account: under OWA, an assertion
is true or false only if its truth value can be formally derived. As a consequence, there
may be reasoning tasks (such as instance checking) for which the truth value cannot
be determined. This is opposed by the commonly employed Closed World Assumption
(CWA), where every statement that cannot be proved to be true, is assumed to be false.
Machine Learning (ML) is already covering a relevant role in the analysis of SW knowl-
edge bases, to overcome the limitations of purely deductive reasoning [17, 10]. In fact,
purely deductive inference does not scale up easily to the size of the web, does not ex-
ploit regularities in data, the construction of a SW knowledge base can be an expensive
process and commonly used SW inference and representation formalisms do not con-
sider the inherent uncertainty characterizing the knowledge in various domains. In this
paper, we face the problem of finding a (locally optimal) set of logic features (in the
form of Description Logic concepts) that, used within a probabilistic graphical model,
can be used to estimate the probability of a previously unknown concept membership
relation between a generic individual and a target concept. Also, we evaluate different
methods of dealing with missing concept-memberships, each coherent with a different
assumption on the missingness mechanism. We will start by describing Bayesian Net-
works (representation, inference and learning) and their extensions towards probability
intervals. Then we will describe our probabilistic-logic model, named terminological
Bayesian classifiers, and the problem of learning them from a set of training individuals
and a Description Logic knowledge base. Also, we will describe our learning algorithm,
and the adaptations to learn under different assumptions on the ignorance model. In the
final part, we will give experimental evidence on the effectiveness of our method.

Related Work

A variety of ML approaches specifically designed for SW knowledge bases have been
proposed; the expressive power of such ontological knowledge representation formalisms
may vary, ranging from languages such as RDF(S) to Description Logics (theoretical
fundation of many OWL variants). A recent survey on this topic is in [17]. In the class of
multi-relational learning techniques, Statistical Relational Learning [7] (SRL) methods
seem particularly appealing, being designed to learn in domains with both a complex
relational and a rich probabilistic structure. There have been proposals for employing
SRL methods when learning from Description Logic knowledge bases: in [4], authors
propose to employ Markov Logic Networks [19] (MLN) for first-order probabilistic
inference and learning within the SW context; learning concepts in a probabilistic ex-
tension of the ALC Description Logic named CRALC is proposed in [15]; in [18], the
Infinite Hidden Relational Models [22] framework is extended to also take into account
a set of constraints in the form of (even more expressive) Description Logic concepts
(such as SHOIN (D)). The aforementioned methods rely on probabilistic graphical
models, which offer sound methods for both inferencing and learning in the presence
of latent variables and missing values [11] (given some assumptions on the missingness
pattern), providing a way for handling assertions whose truth value is not known due to
the adoption of the OWA. However, in the literature it is not clear whether such assump-
tions hold in the SW context: this may be an issue, since from incomplete knowledge



bases by adopting methods not coherent with the nature of the missing knowledge itself
can lead to misleading results with respect to the real model followed by the data [20].

2 Bayesian Networks and Robust Bayesian Estimation

Graphical models [11] (GMs) are a popular framework to compactly describe the joint
probability distribution for a set of random variables, by representing the underlying
structure through a series of modular factors. Depending on the underlying semantics,
GMs can be grouped into two main classes: directed graphical models, which found on
directed graphs, and undirected graphical models, which found on undirected graphs.
A Bayesian network (BN) is a directed GM which represents the conditional dependen-
cies in a set of random variables by using a directed acyclic graph (DAG) G augmented
with a set of conditional probability distributions θG (also referred to as parameters)
associated with G’s vertices. In such a graph, each vertex corresponds to a random vari-
able Xi and each edge indicates a direct influence relation between the two random
variables. A BN stipulates a set of conditional independence assumptions over its set
of random variables: each vertex Xi in the DAG is conditionally independent of any
subset S ⊆ Nd(Xi) of vertices that are not descendants of Xi given a joint state of its
parents, or formally: ∀Xi : Pr(Xi | S, parents(Xi)) = Pr(Xi | parents(Xi)), where
the function parents(Xi) returns the parent vertices of Xi in the DAG representing the
BN. The conditional independence assumption allows to represent the joint probabil-
ity distribution Pr(X1, . . . , Xn) defined by a Bayesian network over a set of random
variables {X1, . . . , Xn} as a production of the individual probability distributions, con-
ditional on their parent variables:

Pr(X1, . . . , Xn) =

n∏
i=1

Pr(Xi | parents(Xi)).

As a result, it is possible to define Pr(X1, . . . , Xn) by only specifying, for each ver-
tex Xi in the graph, the conditional probability distribution Pr(Xi | parents(Xi)).
Given a BN specifying a joint probability distribution over a set of variables, it is pos-
sible to evaluate inference queries by marginalization, like calculating the posterior
probability distribution for a set of query variables given some observed event (i.e. as-
signment of values to the set of evidence variables). Exact inference for general BNs
is an NP-hard problem, but algorithms exist to efficiently infer in restricted classes
of networks, such as variable elimination, which has linear complexity in the num-
ber of vertices if the BN is a singly connected network [11]. Approximate inference
methods also exist in literature, such as Monte Carlo algorithms, belief propagation
or variational methods [11]. The compact parametrization in graphical models allows
for effective learning both model selection (structural learning) and parameter estima-
tion. In the case of BNs, however, finding a model which is optimal with respect to a
given scoring criterion (which measures how well the model fits observed data) may
be not trivial: the number of possible structures for a BN is super-exponential in the
size of its vertices, making it generally impractical to perform an exhaustive search
through the space of its possible models. For this reason we tried to find an accept-
able trade-off between efficiency and expressiveness, so to make our method suitable



for a context like SW: we focused on particular subclasses of Bayesian networks in
which both inference and structure/parameters learning can be performed in polyno-
mial time. The first is naı̈ve Bayesian networks, modelling the dependencies between a
set of random variables X = {X1, . . . , Xn}, also called features, and a random vari-
able C, also called class, so that each pair of features are independent of each other
given the class, i.e. ∀Xi, Xj ∈ X : i 6= j ⇒ (Xi ⊥⊥ Xj |C). This type of models
is especially interesting since it proved to be effective also in contexts in which the
underlying independence assumptions do not hold [5], even outperforming more cur-
rent approaches [1]. However, the mutual conditional independence assumption behind
naı̈ve Bayesian networks can be quite strong: therefore, we also propose employing
tree-augmented naı̈ve (TAN) Bayesian networks, which also allow a tree structure to
exist between feature variables [6]. It is relevant to note that BNs can be used as classi-
fiers, by assigning each new, unclassified instance to the class C maximizing the prob-
ability value Pr(C | e), where e indicates the evidence available about the instance and
Pr the probability distribution encoded by the BN. Defining a BN requires a number
of precise probability assessments which, as we will see, will not be always possible
to obtain. A generalisation of naı̈ve Bayesian networks to probability intervals is the
robust Bayesian estimator [16] (RBE): each conditional probability in the network is a
probability interval characterised by its lower and upper bounds, defined respectively
as Pr(A) = minPr∈P Pr(A) and Pr(A) = maxPr∈P Pr(A), where P is a convex
set of probability distributions. An approach very similar to RBE is presented in [2]
and proposes using Credal networks (which are structurally similar to a BN, but where
the conditional probability densities belong to convex sets of mass functions) to rep-
resent uncertainty about network parameters. A problem with this class of approaches
arises when using such model for classification – in the case of binary classification
with classes C1 and C2, given evidence e for a new, unclassified instance, two posterior
intervals are obtained, i.e. P(C1 | e) and P(C2 | e). If such intervals do not overlap,
the stochastic dominance criterion can be employed, which assigns a new unclassified
instance to class C1 iff P(C1 | e) > P(C2 | e); otherwise, [16] proposes using a
weaker criterion, called weak dominance criterion, which is based on representing each
probability interval into a single probability value represented by its middle point. Due
to the low complexity of inferencing and learning in (tree-augmented) naı̈ve Bayesian
networks, we choose to employ such structures to represent dependency relations be-
tween variables in our probabilistic-logic model; also, we attempt to employ RBE to
explicitly encode the uncertainty about parameters introduced by the adoption of the
OWA, and empirically evaluate different approaches to handling missing attributes.

3 Terminological Bayesian Classifiers

We introduce a formalism, named terminological Bayesian classifier (TBC), consisting
of a BN defined over a set of variables, each mapped to a (possibly complex) Descrip-
tion Logic (DL) concept defined over a DL knowledge base (KB). Each of such DL
concepts can be considered as a feature (so we will refer to them as feature concepts)
so that, given a generic individual a defined over a DL KBK, inferring the membership
relation to such concepts allows us, by means of a TBC defined over K, to infer the



membership probability to a given target concept in K if it was previously unknown.
This means that, within the TBC, each input individual is described by its concept-
membership relation with respect to the feature concepts contained in it. Given a generic
individual a in K, a variable assigned to a DL feature concept F in a TBC defined over
K takes value True if K |= D(a), False if K |= ¬D(a) and the variable is considered
not observable otherwise. A more formal definition of TBC can be given as follows:

Definition 1. (Terminological Bayesian Classifier) A terminological Bayesian classi-
fier NK, with respect to a DL KB K, is defined as a pair 〈G, ΘG〉, representing respec-
tively the structure and parameters of a BN, in which:

– G = 〈V, E〉 is an augmented directed acyclic graph, in which:

• V = {F1, . . . , Fn, C} (vertices) is a set of random Boolean variables, each
linked to a DL concept defined over K. Each Fi (i = 1, . . . , n) is associated to
a feature concept, and C to the target (class) concept (we will use the names
of variables in V to represent the corresponding DL concept for brevity);

• E ⊆ V × V is a set of edges, which model the (in)dependence relations among
the variables in V .

– ΘG is a set of conditional probability distributions (CPD), one for each variable
V ∈ V , representing the conditional probability distribution of the feature concept
given the state of its parents in the graph.

Given a generic individual a in K, each variable Fi ∈ V in the TBC has value True
(resp. False) if K |= Fi(a) (resp. K |= ¬Fi(a)); otherwise (i.e. when K 6|= Fi(a) and
K 6|= ¬Fi(a)) its value is considered as not observable (or missing). If the concept-
membership relation between a and the target conceptC cannot be inferred fromK, the
probability of such concept-membership can be estimated by calculating the conditional
posterior probability using regular BN inference algorithms Pr(C | F1, . . . , Fn) (such
as Variable Elimination).

In the case of terminological naı̈ve Bayesian classifiers, E = {〈C,Fi〉 | i ∈ {1, . . . , n}},
i.e. each feature variable is independent on other feature variables, given the value of
the target variable. TAN networks relax such independence assumptions by allowing a
tree structure among feature variables: in terminological TAN Bayesian classifiers, E =
{〈C,Fi〉 | i ∈ {1, . . . , n}} ∪ ET , where ET = {〈Fi, Fj〉 | i, j ∈ {1, . . . , n}, i 6= j} is
a set of directed edges defining a directed tree structure.

Example 1. (Example of Terminological Naı̈ve Bayesian Classifier) Given a set of DL
feature conceptsF = {Fe := Female,HC := ∃hasChild.>, HS := ∃hasSibling.>} 2

and a target concept FWS := FatherWithSibling, a terminological naı̈ve Bayesian
classifier expressing the target concept in terms of the feature concepts is the following:

2 Here DL concepts have been aliased for brevity.



Pr(HS|FWS)
Pr(HS|¬FWS)

Pr(HC|FWS)
Pr(HC|¬FWS)

Pr(FWS)

Pr(Fe|FWS)
Pr(Fe|¬FWS)

HS := ∃hasSibling.>

HC := ∃hasChild.>

Fe := Female

FWS := FatherWithSibling

LetK be a DL KB and a a generic individual so thatK |= HC(a), and the membership
of a to the concepts Fe and HS is not known, i.e. K 6|= Fe(a) and K 6|= ¬Fe(a). It
is possible to infer, through the given network, the probability that the individual a is a
member of the target concept FWS:

Pr(FWS(a)) =
Pr(FWS) Pr(HC | FWS)∑

FWS′∈{FWS,¬FWS}
Pr(FWS′) Pr(HC | FWS′)

;

In the following we define the problem of learning a terminological Bayesian classifier
NK, given a DL KB K and a set of positive, negative and neutral training individuals
IndC(K) = Ind+C(K) ∪ Ind

−
C(K) ∪ Ind0C(K).

Definition 2. (Terminological Bayesian Classifier Learning Problem) The TBC learn-
ing problem consists in finding a TBC N ∗K maximizing a TBC scoring function with
respect of the training individuals IndC(K) organised in positive, negative and neutral
examples, given their concept-membership to the target concept C in K. Formally:

Given the following:
– a target concept C;
– a set of training individuals IndC(K) in a DL KB K such that:
• ∀a ∈ Ind+C(K) positive example: K |= C(a),
• ∀a ∈ Ind−C(K) negative example: K |= ¬C(a),
• ∀a ∈ Ind0C(K) neutral example: K 6|= C(a) ∧ K 6|= ¬C(a);

– A scoring function specifying a measure of the quality of an induced termino-
logical Bayesian classifier NK w.r.t. the samples in IndC(K);

Find a network N ∗K maximizing a given scoring function Score wrt the samples:

N ∗K ← argmax
NK

Score(NK, IndC(K))).

The search space to find the optimal network N ∗K may be too large to explore exhaus-
tively. For this reason the learning approach proposed here works by incrementally
building the set of feature concepts, with the aim of obtaining a set of concepts maxi-
mizing the score of the induced network; each feature concepts is individually searched
by an inner search process, guided by the scoring function itself, and the whole strategy
of adding and removing feature concepts follows a forward selection/backward elim-
ination strategy. This approach is motivated by the literature about selective Bayesian
classifiers [12], where forward selection of attributes generally increases the classifier’s



accuracy. The algorithm proposed here is organised in two nested loops: the inner loop
is concerned with finding the best feature DL concept addition/removal operation, while
the outer loop implements the abstract greedy feature selection strategy; both are guided
by the network scoring function. In the inner loop, outlined in Alg. 1, the search through

Algorithm 1 Scoring function-driven beam search for a new concept to add to the
terminological Bayesian network.
function Extend(NK, IndC(K))

1: BestNetwork ← ∅;Beam← {Start};NK = 〈G, ΘG〉,G = 〈V, E〉;
2: repeat
3: Candidates← ∅;
4: for c ∈ Beam do
5: for c′ ∈ {c′ ∈ ρcl↓ (c) | |c′| ≤ min(|c|+ depth,maxLength)} do
6: V ′ ← V ∪ {c′};
7: {BuildOptimalNetwork finds the optimal Bayesian network structure and param-

eters for the set of concepts V ′ wrt a given scoring criterion, eventually under a set
of constraints on the network structure and assumptions on the missingness pattern}

8: N ′K ← BuildOptimalNetwork(V ′, IndC(K));
9: Candidates← Candidates ∪ {N ′K, };

10: end for
11: end for
12: Beam← NextBeam(Candidates, Score, width);
13: BestNetwork ← arg max

N∗K∈Beam∪{Best}
Score(N ∗K, IndC(K);

14: until stopping criterion on BestNetwork, Beam;
15: return BestNetwork;

the space of concept definitions is performed through a beam search, using the ρcl↓ re-
finement operator [14] (ρcl↓ (C) returns a set of refinements D of C so that D @ C,
which we consider only up to a given concept length n). For each new complex concept
being evaluated, the algorithm creates a new set of concepts V ′ and finds the optimal
structure, under a given set of constraints (which, in the case of terminological naı̈ve
Bayesian classifiers, is already fixed) and parameters (which may vary depending on the
assumptions on the nature of the ignorance model). Then, the new network is scored,
with respect to a given scoring criterion. In the outer loop, a variety of feature selection
strategies can be implemented [9]. In this particular case, a Forward Selection Backward
Elimination approach is proposed, at each iteration considering to add a new concept
to the network or removing at most a variable number of concepts. We experimented
with two variants of such approach, both implemented through Alg. 2: Forward Selec-
tion (FS) which adds a single concept to the network at each iteration and Fast Forward
Selection Backward Elimination (FFSBE) which at each iteration adds or removes one
concept from the network. In the algorithm, such feature selection methods correspond
to different values of the max parameter in Alg. 2 (representing the maximum number
of concepts that can be removed from the network), i.e. 0 and 1 respectively.



Algorithm 2 Forward Selection Backward Elimination approach for the incremental
construction of terminological Bayesian classifiers.
function FSBE(K, IndC(K),max)

1: N 0
K = 〈G0, ΘG0〉,G0 = 〈V0 ← {C}, E0 ← ∅〉; t← 0;

2: repeat
3: t← t+ 1;
4: {A new network is selected among a set of possible candidates, obtained by either adding

of removing a set of concepts to the structure, so to maximize the scoring criterion Score}
5: Candidates = {Extend(N t−1

K , IndC(K)), Remove(N t−1
K , IndC(K),max)};

6: N t
K ← arg maxN∗K∈Candidates Score(N

∗
K, IndC(K));

7: until Score(N t
K, IndC(K)) ≤ Score(N t−1

K , IndC(K));
8: return N t−1

K ;

function Remove(NK, IndC(K),max)

1: {Finds the best network that could be obtained by removing at most max feature concepts
from the network structure, wrt a given scoring criterion Score}

2: NK = 〈G, ΘG〉,G = 〈V, E〉;BestNetwork ← NK;
3: for V ′ ⊂ V : |V | − |V ′| ≤ max do
4: N ′K ← BuildOptimalNetwork(V ′, IndC(K));
5: if Score(N ′K, IndC(K)) ≥ Score(BestNetwork, IndC(K)) then
6: BestNetwork ← N ′K;
7: end if
8: end for
9: return BestNetwork;

Different Assumptions on the Ignorance Model

However, during the learning process, it may happen that the concept membership be-
tween a training individual and some of the feature concepts may not be known. De-
pending on the reason of such missingness, Probabilistic Graphical Models offer a va-
riety of approaches of handling this [11]. Formally, the missing data handling method
depends on the probability distribution underlying the missingness pattern [21], which
in turn can be classified on the basis of its behaviour with respect to the variable of
interest.

– Missing Completely At Random (MCAR) – in this case, the variable of interest is
independent from its observability, as any other variable in the probabilistic model.
This is the precondition for case deletion to be valid, and missing data does not
usually belong to such class [21].

– Missing At Random (MAR) – happens when the observability of the variable of
interest depends on the value of some other variable in the probabilistic model.

– Not Missing At Random/Informatively Missing (NMAR, IM) – here, the actual
value of the variable of interest influences the probability of its observability.

Example 2. (Different Ignorance Models in Terminological Bayesian Classifiers) Con-
sider the network in Ex. 1: if the probability that the variable Fe is observable is inde-
pendent on all other variables in the network, then it’s missing completely at random;
if it only depends, for example, on the value of FWS, then it’s missing at random; if it



is dependent on the value Fe would have if it was not missing, then it is informatively
missing.

Each of the aforementioned assumptions on the missingness pattern implies a different
way of learning both network structure and parameters in presence of partially observed
data. If MCAR holds, Available Case Analysis [11] can be used, where maximum like-
lihood network parameters are estimated using only available knowledge (i.e. ignoring
missing data); we are adopting the heuristic used in [8] of setting network’s parameters
to their maximum likelihood value, which is both accurate and efficient. As scoring
function, similarly to [8], we adopt the conditional log-likelihood on positive and neg-
ative training individuals, defined as 3:

CLL(NK | IndC(K)) =
∑

a∈Ind+
C(K)

log Pr(C(a) | NK)+
∑

a∈Ind−C(K)

log Pr(¬C(a) | NK);

A problem with using simply CLL as scoring criterion is that it tends to favour complex
structures [11] that overfit the training data. To avoid overfitting, we penalize the condi-
tional log-likelihood through the Bayesian Information Criterion (BIC) [11], where the
penalty is proportional to the number of independent parameters in a network (accord-
ing to the minimum description length principle) and is defined as follows:

BIC(NK | IndC(K)) = CLL(NK | IndC(K))−
logN

2
|ΘG |; (1)

whereN is the number of data points and |ΘG | is the number of independent parameters
in the network. Under the naı̈ve Bayes assumption, there is no need to perform a search
for finding the optimal network, since the structure is already fixed (each node except
the target concept node has only one parent, which is the target concept node). With-
out constraining the space of possible network structures, finding a structure which is
optimal under some criterion may require an exhaustive search in the space of possible
structures. However, in the case of TAN networks, if the scoring function is decompos-
able, there is an efficient method of finding a globally optimal network structure [6].
In this work, we create a complete weighted digraph among feature variables, each di-
rected edge weighted with the BIC score (defined using the model’s log-likelihood)
gain that adding that edge would provide to the network, and then find the maxi-
mum weighted spanning tree structure using Chu-Liu-Edmonds algorithm (which has
a O(V 2) time complexity on dense digraphs, where V is the number of nodes). When
learning network parameters from MAR data, a variety of techniques is available, such
as Expectation-Maximization (EM), MCMC sampling or gradient ascent [11]. In this
work, EM is used as outlined in Alg. 3: it first initialises network parameters using es-
timates that ignore missing data; Then, it considers individuals whose membership to a
generic concept D is not known as several fractional individuals belonging, with differ-
ent weights (corresponding to the posterior probability of their concept membership), to
both the components D and ¬D; such fractional individuals are used to recalculate net-
work parameters (obtaining the so-called expected counts) and the process is repeated

3 When used to score networks, conditional log-likelihoods are calculated ignoring available
knowledge about the membership between training individuals and the target concept.



until convergence (e.g. when the improvement in log-likelihood is lower than a specific
threshold). At each iteration, the EM algorithm applies the following two steps:

Algorithm 3 Outline for our implementation of the EM algorithm for parameter learn-
ing from MAR data in a terminological Bayesian classifier.
function EM(N 0

K, IndC(K))

1: {N 0
K was initialized with arbitrary heuristic parameters Θ0

G}
2: N 0

K = 〈G, Θ0
G〉,G = 〈V, E〉; t← 0;

3: repeat
4: {n̄(xi, πxi)} ← ExpCounts(NK, IndC(K));
5: {Network parameters Θt+1

G are updated according to the inferred expected counts}
6: for Xi ∈ V, 〈xi, πxi〉 ∈ vals(Xi, parents(Xi)) do
7: θt+1

G (xi, πxi)←
n̄(xi,πxi

)∑
x′
i
∈vals(Xi)

n̄(x′i,πxi
)
;

8: end for
9: t← t+ 1;

10: N t
K = 〈G, ΘtG〉;

11: {The iterative process stops when improvements in log-likelihood are ≤ a threshold}
12: until L(N t

K | IndC(K))− L(N t−1
K | IndC(K)) ≤ τ ;

13: return N t
K;

function ExpCounts(NK, IndC(K))

1: NK = 〈G, ΘG〉,G = 〈V, E〉;
2: for Xi ∈ V, 〈xi, πxi〉 ∈ vals(Xi, parents(Xi)) do
3: n̄(xi, πxi)← 0;
4: end for
5: {n̄(xi, πxi) will contain the expected counts for (Xi = xi, parents(Xi) = πxi)}
6: for a ∈ IndC(K) do
7: for Xi ∈ V, 〈xi, πxi〉 ∈ vals(Xi, parents(Xi)) do
8: n̄(xi, πxi)← n̄(xi, πxi) + Pr(xi, πxi | NK);
9: end for

10: end for
11: return {n̄(xi, πxi)};

– Expectation: using available data and the current network parameters, infers a dis-
tribution over possible completions for the missing knowledge;

– Maximization: considering each possible completion as a fully available data case
(weighted by its probability), infers next parameters through frequency counting.

For structure learning in TAN Bayesian networks from MAR data, this works used
the Structural EM (SEM) algorithm [11]. In SEM, outlined in Alg. 4, the maximization
step is performed both in the space of structures G and in the space of parameters ΘG ,
by first searching a better structure (maximizing the expected score of the network)
and then the best parameters associated to the given structure. It can be proven that, if
the search procedure finds a structure that is better than the one used in the previous
iteration wrt a scoring function, then the SEM algorithm will monotonically improve



Algorithm 4 Outline for our implementation of the Structural EM algorithm for struc-
ture and parameter learning from MAR data in a terminological Bayesian classifier.
function SEM(N 0

K, IndC(K))

1: t← 0;
2: N 0

K ← EM(N 0
K, IndC(K));

3: repeat
4: t← t+ 1;
5: {The FindStructure function returns a new network maximizing the expected network

score (wrt the actual network) with its parameter initialised to an initial heuristic value}
6: N t

K ← FindStructure(IndC(K) | N t−1
K )

7: N t
K ← EM(N t

K, IndC(K));
8: {The iterative process stops whenN t

K does not show improvements in score overN t−1
K }

9: until Score(N t
K, IndC(K)) ≤ Score(N t−1

K , IndC(K));
10: return N t−1

K ;

such score. At each iteration of the SEM algorithm, we find the very same approach we
used with MCAR data, except that we employ the expected value of the BIC score [11]
on training individuals.

When data is NMAR/IM it may be harder to model, since we cannot assume that
observed and missing values follow the same distributions. However, it is generally
possible to extend the probabilistic model to produce one where the MAR assumption
holds; if the value of a variable associated to the feature concept Fi is informatively
missing, we can consider its observability as a indicator Boolean variable Oi (such that
Oi = False iff K 6|= Fi(a) and K 6|= ¬Fi(a), Oi = True otherwise) and include it
in our probabilistic model, so that Fi’s ignorance model satisfies the MAR assumption
(since the probability of Fi to be observable depends on the always observable indicator
variable Oi). Doing this may however raise some problems, since the induced proba-
bilistic model will be dependent on the specific ignorance model in the training set, and
changes in such missingness pattern may impact on the model’s effectiveness.

An alternate solution proposed in literature is Robust Bayesian Estimation [16]
(RBE), which allows to learn interval-valued conditional probability distributions which
explicitly represent the uncertainty about network parameters. RBE allows to infer pos-
terior probability intervals instead of single posterior probability values, obtained by
taking in account all the possible fillings of the missing knowledge. Such interval-
valued and posterior intervals 4 can be calculated in closed form, as described in [16].
To score each induced network, we empirically choose to calculate posterior intervals,
get their central point and then use them as probability values to calculate e.g. the BIC
score as in Eq. 1. Another evaluation approach has been proposed in [23] to compare
credal classifiers, and proposes using a scoring criterion based on discounted accuracy
and a function indicating risk-aversion.

Example 3. (Example of Terminological Naı̈ve Bayesian Classifier using RBE) Con-
sider again the terminological naı̈ve Bayesian classifier in Example 1: when learning in

4 A posterior interval estimate represents the range of probability values associated to the mem-
bership of an instance to a class.



presence of NMAR data, it can be extended with interval-valued network parameters
for inferring posterior probability intervals instead of single posterior probability values
through Robust Bayesian Estimation. In such class of networks, conditional probability
tables associated to each node contain convex intervals of probability values instead of
single probability values, each defined by its upper and lower bound.

Pr(HS|FWS),Pr(HS|FWS)]

[Pr(HS|¬FWS),Pr(HS|¬FWS)]

Pr(HC|FWS),Pr(HC|FWS)]

[Pr(HC|¬FWS),Pr(HC|¬FWS)]

[Pr(FWS),Pr(FWS)]

Pr(Fe|FWS),Pr(Fe|FWS)]

[Pr(Fe|¬FWS),Pr(Fe|¬FWS)]

HS := ∃hasSibling.>

HC := ∃hasChild.>

Fe := Female

FWS := FatherWithSibling

Interval-valued network parameters can be calculated efficiently [16]. E.g. the parame-
ters associated to the feature concept HC can be calculated as follows:

n(HC|FWS)=n(?|FWS)+n(HC|?)+n(?|?); n(HC|FWS)=n(?|FWS)+n(¬HC|?)+n(?|?);

Pr(HC|FWS)=
n(HC|Fa)+n(HC|FWS)

n(Fa)+n(HC|FWS)
; Pr(HC|FWS)=

n(HC|FWS)
n(FWS)+n(HC|FWS)

;

where n(? | FWS) = |{a ∈ Ind+FWS(K) | K 6|= HC(a) and K 6|= ¬HC(a)}|,
n(HC |?) = |{a ∈ Ind0FWS(K) | K |= HC(a)}| and n(? |?) = |{a ∈ Ind0FWS(K) |
K 6|= HC(a)∧K 6|= ¬HC(a)}|. Inference can be performed as follows: given a generic
individual a such thatK |= HC(a), the probability that a is a member of concept FWS
belongs to the posterior probability interval [Pr(FWS | HC),Pr(FWS | HC)],
where:

Pr(FWS | HC)= Pr(HC|FWS)Pr(FWS)

Pr(HC|FWS)Pr(FWS)+Pr(HC|¬FWS)Pr(¬FWS)
;

Pr(FWS | HC)= Pr(HC|FWS)Pr(Fa)

Pr(HC|FWS)Pr(FWS)+Pr(HC|¬FWS)Pr(¬FWS)
;

4 Experiments

In this section we empirically evaluate the impact of adopting different missing knowl-
edge handling methods and search strategies, during the process of learning (naı̈ve and
TAN) TBCs from real world ontologies. Starting from a set of real ontologies 5 (out-
lined in Table 1), we generated a set of 20 random query concepts for each ontology 6,
so that the number of individuals belonging to the target query concept C (resp. ¬C)
was at least of 10 elements and the number of individuals in C and ¬C was in the

5 From TONES Ontology Repository: http://owl.cs.manchester.ac.uk/repository/
6 Using the query concept generation method available at http://lacam.di.uniba.it:

8000/~nico/research/ontologymining.html



Ontology DL Expressivity #Axioms #Individuals #Classes #ObjectProperties

MDM0.73 ALCHOF(D) 1098 112 196 22
LEO ALCHIF(D) 430 61 32 26

FAMILY-TREE SROIF(D) 2059 368 22 52
WINE SHOIN (D) 1046 218 142 21

BIOPAX (PROTEOMICS) ALCHN (D) 773 49 55 47

Table 1. Ontologies considered in the experiments.

same order of magnitude. A DL reasoner 7 was employed to decide on the theoreti-
cal concept-membership of individuals wrt the query concepts. In experiments, we re-
learned such concept queries as (naı̈ve and TAN) TBCs, using individuals retrieved by
each query (resp. its complement) as positive (resp. negative) examples. The evaluated
missing knowledge handling methods were Robust Bayesian Estimation (ROBUST)
and, for naı̈ve and TAN networks respectively: Available Case Analysis (ACA and
TACA), the (structural) EM algorithm (EM and SEM), and two additional approaches
aiming at including a features’ observability in the resulting model (IM3 and IM2 for
naı̈ve and TIM3 and TIM2 for TAN structures). The last two approaches build networks
which are dependant on the ignorance model: IM3 and TIM3(where IM here stands for
Informatively Missing) makes use of three-valued feature variables taking a value in
{True, False, Unknown} when the membership to the associated feature concept is
respectively true, false or not known; while IM2 and TIM2 employ two-valued feature
variables, taking a value in {True,Other}, when the membership to the associated
feature concept is respectively true or either false or not known. During experiments,

FS ACA EM IM3 IM2 TACA SEM TIM3 TIM2 ROBUST
LEO .96± .14 .96± .14 .91± .2 .96± .14 .93± .18 .93± .18 .89± .21 .93± .18 .9± .2

MDM .88± .25 .88± .25 .85± .27 .92± .2 .85± .26 .85± .26 .73± .32 .86± .26 .62± .39
WINE .89± .21 .89± .21 .87± .23 .92± .18 .89± .22 .89± .22 .83± .25 .86± .24 .78± .3
F-T 1± 0 1± 0 1± 0 1± 0 1± 0 1± 0 1± 0 1± 0 1± 0

PROTEOMICS .95± .13 .95± .13 .86± .22 .96± .11 .81± .25 .81± .25 .77± .26 .8± .26 .75± .26

FFSBE ACA EM IM3 IM2 TACA SEM TIM3 TIM2 ROBUST
LEO .96± .14 .96± .14 .91± .2 .96± .14 .93± .18 .93± .18 .89± .21 .93± .18 .9± .2

MDM .88± .25 .88± .25 .86± .27 .92± .21 .85± .26 .85± .26 .73± .32 .86± .26 .63± .39
WINE .9± .21 .9± .21 .87± .23 .92± .19 .89± .22 .89± .22 .83± .25 .86± .24 .78± .3
F-T 1± 0 1± 0 1± 0 1± 0 1± 0 1± 0 1± 0 1± 0 1± 0

PROTEOMICS .95± .13 .95± .13 .86± .22 .96± .11 .81± .25 .81± .25 .77± .26 .8± .26 .76± .26

Table 2. Statistics for cross-validated AUC-PR results on the generated data sets: for each on-
tology in Table 1, 20 query concepts were generated, and each was used to obtain a sample of
positive/negative individuals, which were then used to evaluate the methods using k-fold cross
validation (with k = 10) through the AUC-PR metric.

refinements were only allowed to contain conjunctions/disjunctions of concepts, com-

7 Pellet v2.3.0 – http://clarkparsia.com/pellet/



plements and existential restrictions, and refinements started from concept >. To avoid
overfitting, the greedy network construction was driven by the BIC score in Eq. 1. In
experiments, each of the 20 generated query concepts, was used to obtain a pair of sets
composed by positive and negative examples, selecting the individuals in the ontology
belonging respectively to the query concept and its complement. On each of such pairs
of positive/negative examples, k-fold cross validation (with k = 10) was used to es-
timate k Area Under the Precision-Recall Curve [3] (AUC-PR) values (for ROBUST
we used the midpoint of each posterior interval was used to associate a probability to
concept-memberships), using inferred concept-membership probability to rank testing
individuals. Results are summarised in Table 2. Parameters depth and maxLength
(indicating resp. the maximum depth of each refinement step and the maximum length
of a feature concept) were both set to 3 (2 in the case of the more complex ontology
FAMILY-TREE). In almost every case, forcing the existence of a maximum (penalized)
likelihood tree structure to exist between feature concepts did not benefit the ranking
capability: for example, in the IM3/TIM3 and IM2/TIM2 cases, naı̈ve Bayesian net-
works had significantly greater AUC-PR values than TAN counterparts (with p < 0.01
under a Student’s paired t-test); a reasons for this is that BIC-driven search, because
of the higher cost of adding feature concepts (depending on the higher number of net-
work parameters), prevents the introduction of discriminative feature concepts in the
network to keep its structure simple. This is also the reason that caused, in all fea-
ture selection strategies, IM2/TIM2 to have higher AUC-PR scores than their IM3/TIM3

counterparts (with p < 0.01). Comparing the methods to learn the parameters of naı̈ve
Bayesian networks on different assumptions on the missingness pattern, it emerged that
IM2 had greater AUC-PR results with all the experimented feature selection approaches
(with p < 0.01), suggesting that the missingness of concept-membership information
was informative (except in the case of the LEO ontology, where other approaches to
dealing with missing informations had similar results). Also, using the midpoint of Ro-
bust Bayesian Estimators’ posterior intervals led to worse results when ranking target
concept-membership probabilities. However, it can still be used to explicitly represent
the uncertainty on parameters caused by missing knowledge within the Semantic Web.

5 Conclusions and Future Work

This paper proposes a method, terminological Bayesian classifiers, to efficiently esti-
mate the probability that a generic individual belongs to a specific target concept, given
its concept-membership relation to a set of DL feature concepts; this work focused on
network structures which allow for efficient inference and learning, and empirically
evaluated different methods to handle missing data resulting from the adoption of the
OWA. In the future, we aim at exploring other network structure which allow for ef-
ficient inference and learning, at extending this framework towards role-membership
prediction and to evaluate it more extensively on real world ontologies.
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