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Abstract—Knowledge Graphs (KGs) are a widely used formal-
ism for representing knowledge in the Web of Data. We focus
on the problem of link prediction, i.e. predicting missing links in
large knowledge graphs, so to discover new facts about the world.
Representation learning models that embed entities and relation
types in continuous vector spaces achieve state-of-the-art results
on this problem, while showing the potential to scale to very
large KGs. A limiting factor is that the process of learning the
optimal embeddings can be very computationally expensive, and
may even require days for large KGs. In this work, we propose a
principled method for reducing the training time by an order of
magnitude, while learning more accurate link prediction models.
Furthermore, we employ the proposed method for training a
set of novel, scalable models, with high predictive accuracy. Our
extensive evaluations show significant improvements over state-
of-the-art link prediction methods on several datasets.

I. INTRODUCTION

Knowledge Graphs (KGs) are graph-structured Knowledge
Bases (KBs), where factual knowledge about the world is
represented in the form of relationships between entities. They
are widely used for representing relational knowledge in a
variety of domains, such as citation networks and protein
interaction networks. An example of their widespread adoption
is the Linked Open Data (LOD) Cloud, a set of interlinked KGs
such as Freebase [1] and WordNet [2]. As of April 2014, the
LOD Cloud was composed by 1,091 interlinked KBs, globally
describing over 8 × 106 entities and 188 × 106 relationships
holding between them 1.

Despite their large size, KGs are still largely incomplete.
For example consider Freebase 2, a core element in the Google
Knowledge Vault project [3]: 71% of the persons described in
Freebase have no known place of birth, 75% of them have no
known nationality, and the coverage for less frequent predicates
(relation types) can be even lower [3].

In this work we focus on the problem of automatically
completing missing links in large KGs, so to discover new
facts about the world. In the literature, this problem is referred
to as link prediction or knowledge graph completion, and has
received a considerable attention over the last years [4].

Recently, representation learning models [5] such as the
Translating Embeddings model (TransE) [6] have been used
for achieving new state-of-the-art link prediction results on
large and Web-scale KGs. Such models learn a unique dis-
tributed representation for each entity and predicate in the KG:
each entity is represented by a low-dimensional embedding

1State of the LOD Cloud 2014: http://lod-cloud.net/
2Publicly available at https://developers.google.com/freebase/data

vector, and each predicate is represented as an operation in
the embedding vector space. These models are closely related
to distributional semantic natural language processing models
such as word2vec [7], which represent each word in a corpus
of documents as a low-dimensional embedding vector. We
refer to these models as embedding models, and to the learned
distributed representations as embeddings. The embeddings
of all entities and predicates in the KG are learned jointly:
the learning process consists in minimizing a global loss
function considering the whole KG, by back-propagating the
loss to the embeddings. As a consequence, the learned entity
and predicate embeddings retain global, structural information
about the whole KG, and can be used to serve several kinds
of applications: in link prediction, the confidence of each can-
didate edge can be measured as a function of the embeddings
of its source entity, its target entity, and its predicate.

A major limitation of the models discussed so far is that the
learning procedure, which consists in learning the distributed
representations of all entities and predicates in the KG, can
be very time-consuming: for instance, it may even require
days of computations for large KGs [8]. As a solution to this
problem, in this work we propose a novel, principled method
for significantly reducing the learning time in KG embedding
models. Furthermore, we employ the proposed method for
training a variety of novel, more accurate models, achieving
new state-of-the-art results on several link prediction tasks.

II. BASICS

RDF Graphs

The most widely used formalism for representing knowl-
edge graphs is the W3C Resource Description Framework
(RDF) 3, a recommended standard for representing knowledge
on the Web. An RDF KB, also referred to as RDF graph, is
a set of RDF triples in the form 〈s, p, o〉, where s, p and o
respectively denote the subject, the predicate and the object of
the triple: s and o are entities, and p is a relation type. Each
triple 〈s, p, o〉 describes a statement, which is interpreted as “A
relationship p holds between entities s and o”.

Example 2.1 (Shakespeare): The statement “William
Shakespeare is an author who wrote Othello and the tragedy
Hamlet” can be expressed by the following RDF triples:

〈Shakespeare, profession, Author〉
〈Shakespeare, author, Hamlet〉
〈Shakespeare, author, Othello〉
〈Hamlet, genre, Tragedy〉

3http://www.w3.org/TR/rdf11-concepts/

http://lod-cloud.net/
https://developers.google.com/freebase/data
http://www.w3.org/TR/rdf11-concepts/


TABLE I: Scoring functions used by several link prediction models, and the corresponding number of parameters: ne = |EG|
and nr = |RG| respectively denote the number of entities and predicates in G, and k, d ∈ N are user-defined hyper-parameters.

Model Scoring function fp(es, eo) Number of Parameters

Unstructured [9] −‖es − eo‖22, es, eo ∈ Rk O (nek)

Translating Embeddings (TransE) [6] −‖(es + ep)− eo‖{1,2}, ep ∈ Rk O (nek + nrk)

Structured Embeddings (SE) [10] −‖Wp,1es −Wp,2eo‖1, Wp,i ∈ Rk×k O
(
nek + nrk

2
)

Semantic Matching Energy (SME) [9]
Linear

−(W1es + W2ep + b1)T (W3eo + W4ep + b2)

ep ∈ Rk,Wi ∈ Rd×k,bj ∈ Rd O (nek + nrk + dk)

Semantic Matching Energy (SME) [9]
Bilinear

−
[
(W1 ×3 ep)es

]T [
(W2 ×3 ep)eo

]
ep ∈ Rk,Wi ∈ Rd×k×k,bj ∈ Rd O

(
nek + nrk + dk2

)
Neural Tensor Network (NTN) [11]

−uT
p f

(
eT
s Wpeo + Wp,1es + Wp,2eo + bp

)
Wp ∈ Rk×k×d,Wp,i ∈ Rd×k,up,bp ∈ Rd

O
(
nek + nrdk

2
)

An RDF graph can be viewed as a labeled directed
multigraph, where each entity is a vertex, and each RDF triple
is represented by a directed edge whose label is a predicate,
and emanating from its subject vertex to its object vertex. In
RDF KBs, the Open-World Assumption holds: a missing triple
does not mean that the corresponding statement is false, but
rather that its truth value is unknown (it cannot be observed).

In the following, given an RDF graph G, we denote as EG
the set of all entities occurring as subjects or objects in G, and
as RG the set of all predicates occurring in G. Formally:

EG = {s | ∃〈s, p, o〉 ∈ G} ∪ {o | ∃〈s, p, o〉 ∈ G},
RG = {p | ∃〈s, p, o〉 ∈ G}.

For instance, in the case of the RDF graph shown in Ex. 2.1,
we have that EG = {Author,Shakespeare,Hamlet,
Othello,Tragedy} and RG = {profession,author,
genre}. Furthermore, we denote as SG = EG ×RG ×EG as
the space of possible triples of G, i.e. the set of all triples that
can be created by using the entities and predicates in G (note
that G ⊆ SG). We refer to all triples in G as observed triples,
and to all triples in SG \G as unobserved triples.

Knowledge Graph Embedding Models

In the literature, several models and methods have been
proposed for embedding KGs in continuous, low-dimensional
vector spaces, by learning an unique distributed representation
(or embedding) for each entity and predicate in the KG.
For instance, in [12], authors cast the problem of learning
the optimal entity and predicate embeddings as a three-way
adjacency tensor factorization problem. In [10], [6], [11], [9],
authors describe the interactions between entity and predicate
embeddings by means of an energy-based model: in these
works, the entity and predicate embeddings are learned jointly,
by minimizing a loss functional measuring the discrepancy
between the model and the KG by using Stochastic Gradient
Descent. We refer to the corresponding articles for more details
on each of these models.

Regardless of the learning procedure, the aforementioned
models share a fundamental characteristic: given a KG G, they
represent each entity x ∈ EG by means of a continuous em-
bedding vector ex ∈ Rk, where k ∈ N is a user-defined hyper-
parameter. Similarly, each predicate p ∈ RG is associated to a
scoring function fp : Rk×Rk → R, also referred to as energy
function [9]. For each pair of entities s, o ∈ EG, the score
fp(es, eo) measures the confidence that the statement encoded

by the triple 〈s, p, o〉 holds true. For such a reason, such models
can be considered as multi-relational energy-based models [9].

In a link prediction setting, KG embedding models are
used as follows. First, the optimal embeddings for all entities
and predicates in the KG are learned, by minimizing a loss
function and back-propagating the loss to the embeddings.
Then, the learned model is used for ranking unobserved triples
in descending order: triples with higher scores have an higher
probability of representing true statements, and are considered
for a completion of the KG.

Consider the RDF graph shown in Ex. 2.1: we aim
at learning a model that assigns a higher score (cor-
responding to a higher probability value) to the triple
〈Othello,genre,Tragedy〉, which is unobserved but rep-
resents the true statement “Othello is a Tragedy”, and a lower
score (corresponding to a lower probability value) to other
unobserved triples, such as 〈Hamlet,genre,Author〉.

III. KNOWLEDGE GRAPH EMBEDDING MODELS

Several embedding models have been proposed in the
literature for addressing the problem of link prediction in
KGs [10], [13], [6], [11], [9], [14]. As mentioned in Sect. II,
they share a fundamental characteristic: they can be used for
learning a distributed representation (or embedding) for each
entity and predicate in the KG. We refer to such models as
embedding models, and denote the distributed representation
of an entity or predicate z by adding a subscript to the
corresponding vector or matrix representation, as in ez ∈ Rk.

Formally, let G be an RDF graph. For each entity x ∈ EG,
embedding models learn a continuous vector representation
ex ∈ Rk, with k ∈ N, called the embedding vector of x.
Similarly, for each predicate p ∈ RG, they learn a scoring
function fp : Rk×Rk → R, defined on pairs of embeddings in
the embedding vector space, and defined by a set of embedding
parameters. The score fp(es, eo) of a triple 〈s, p, o〉 is defined
as a function of the distributed representations (embeddings)
of its subject s, its predicate p and its object o, and indicates
the probability that the corresponding statements holds true.

In Tab. I, we report the scoring functions adopted by
several models proposed in the literature. For each model,
we report the number of parameters needed for storing the
distributed representations of all entities and predicates in the
KG: ne = |EG| denotes the number of entities in the KG,
nr = |RG| denotes the number of predicates, and k, d ∈ N are
user-defined hyper-parameters. In general, if the number of



parameters grows super-linearly with the number of entities
and predicates in the KG, it becomes increasingly harder for
the model to scale to large, highly-relational KGs [13].

The Translating Embeddings Model. Among the
models outlined in Tab. I, the recently proposed Translating
Embeddings model (TransE) [6] is particularly interesting:

(i) It achieves better results than other state-of-the-art link
prediction methods on several datasets.

(ii) The number of parameters in TransE scales linearly in
the number of entities ne and predicates nr in the KG.

The TransE model is very simple: each entity x ∈ EG
is represented by its embedding vector ex ∈ Rk, and each
predicate p ∈ RG is represented by a (vector) translation op-
eration ep ∈ Rk. The score of a triple 〈s, p, o〉 is given by the
similarity (negative L1 or L2 distance) between the translated
subject embedding (es + ep) and the object embedding eo:

fp(es, eo) = −‖(es + ep)− eo‖{1,2}.
In the TransE model, the optimal embedding and translation
vectors are learned jointly, as discussed in detail in Sect. IV.
The number of parameters needed by the TransE model for
storing all the embedding and translation vectors is (nek +
nrk), a quantity that grows linearly with ne and nr. For such
a reason, TransE can potentially scale to very large and highly-
relational KGs [6].

A Novel Set of KG Embedding Models. In the
following, we propose a set of variants of the TransE model.
Let sim(x,y) be a similarity function, from the following
set: sim(x,y) ∈ {−‖x − y‖1,−‖x − y‖2,xTy}, i.e. chosen
from the negative L1 and L2 distance, and the inner product.
We propose the following embedding models, where each is
defined by the corresponding scoring function fp:

• TransE : fp(es, eo) = sim(es + ep, eo),
• TransE+ : fp(es, eo) = sim(es + ep,1, eo + ep,2),
• ScalE : fp(es, eo) = sim(es ◦ ep, eo),
• ScalE+ : fp(es, eo) = sim(es ◦ ep,1, eo ◦ ep,2),

where es, eo ∈ Rk are the embedding vectors of the entities
appearing as the subject s and the object o of the triple;
ep, ep,1, ep,2 ∈ Rk are the embedding parameters of the
predicate p of the triple, denoting either a translation or a
scaling vector; and ◦ denotes the Hadamard (element-wise)
product, corresponding to the vector scaling operation.

The scoring function in TransE is the same used in [6],
but also allows using the inner product as a similarity measure
between the (translated) subject and object embedding vectors,
if it shows to improve the performance on the validation set.
The TransE+ model generalizes TransE by also translating the
object embedding vector eo. The ScalE and ScalE+ models
are similar to the previous two models, but replace the vector
translation with a scaling operation. The rationale behind
ScalE and ScalE+ is the following: scaling the embedding
vector of an entity can be seen as weighting the (latent) features
of such an entity in the embedding vector space.

All proposed models share the same advantages as the
TransE model: (i) The required number of parameters is
O (nek + nrk), which grows linearly with ne and nr, and
(ii) The gradients of the scoring functions w.r.t. the embedding
of entities and predicates can be computed very efficiently.

Algorithm 1 Learning the model parameters via SGD [6]

Require: Learning rate η, Batch size n, Iterations τ
Ensure: Optimal entity and predicate embeddings θ̂

1: Initialize entity and predicate embeddings θ0

2: for t ∈ 〈1, . . . , τ〉 do
3: ex ← ex/‖ex‖, ∀x ∈ EG {Normalize embeddings}
4: T ← SAMPLEBATCH(G,n)

5: gt ← ∇
∑

(〈s,p,o〉,〈s̃,p,õ〉)∈T

[
γ − fp(es, eo) + fp(es̃, eõ)

]
+

6: ∆t ← −ηgt {Compute the update}
7: θt ← θt−1 + ∆t {Update the embeddings}
8: end for
9: return θτ

IV. IMPROVING THE EFFICIENCY OF THE
REPRESENTATION LEARNING PROCESS

In [10], [6], [9], authors propose a method for jointly learn-
ing the distributed representations of all entities and predicates
in a KG G. The method relies on a stochastic optimization
process, that iteratively updates the distributed representations
by increasing the score of triples in G (observed triples) while
lowering the score of triples in SG \ G (unobserved triples).
During the learning process, unobserved triples are randomly
generated by means of a corruption process, which replaces
either the subject or the object of each observed triple with
another entity in G. Formally, given an observed triple y ∈ G,
let CG(y) denote the set of all corrupted triples obtained by
replacing either its subject or object with another entity:

CG(〈s, p, o〉) = {〈s̃, p, o〉 | s̃ ∈ EG} ∪ {〈s, p, õ〉 | õ ∈ EG}.
The distributed representations of all entities and predicates
in the KG can be learned by minimizing a margin-based
ranking loss. Formally, let θ ∈ Θ denote a configuration for all
entity and predicate embeddings (i.e. the model parameters),
where Θ denotes the space of parameters. The optimal model
parameters θ̂ ∈ Θ can be learned by solving the following
constrained optimization problem:

minimize
θ∈Θ

∑
〈s,p,o〉∈G

∑
〈s̃,p,õ〉∈
CG(〈s,p,o〉)

[
γ − fp(es, eo) + fp(es̃, eõ)

]
+

subject to ∀x ∈ EG : ‖ex‖ = 1,

(1)

where [x]+ = max{0, x}, and γ ≥ 0 is a hyper-parameter
referred to as margin. The loss functional in Eq. 1 enforces
the score of observed triples to be higher than the score of
unobserved triples. The constraints in the optimization problem
prevent the training process to trivially solve the problem by
increasing the entity embedding norms.

Stochastic Gradient Descent. In related works on KG
embedding [10], [6], [9], the constrained loss minimization
problem in Eq. 1 is solved using Stochastic Gradient Descent
(SGD) in mini-batch mode, as summarized in Alg. 1. On each
iteration, the algorithm samples a batch of triples from the
knowledge graph G. Batches are obtained by first randomly
permuting all triples in G, partitioning them into nb batches
of the same size, and then iterating over such batches. A
single pass over all triples in G is called an epoch. Then,



TABLE II: Statistics for the datasets used in the Link Prediction and Triple Classification tasks.

Dataset Entities Predicates Training Triples Valid. Triples Test Triples
FREEBASE (FB15K) [6] 14,951 1,345 483,142 50,000 59,071
WORDNET (WN18) [6] 40,943 18 141,442 5,000 5,000
FREEBASE (FB13) [11] 75,043 13 316,232 11,816 47,466

WORDNET (WN11) [11] 38,588 11 112,581 5,218 21,088

for each triple y in the batch, the algorithm generates a
corrupted triple ỹ uniformly sampled from CG(y): this leads
to a set T of observed/corrupted pairs of triples 〈y, ỹ〉. The
observed/corrupted triple pairs are used for computing the
gradient of the objective (loss) function in Eq. 1 w.r.t. the
current model parameters θ. Finally, θ is updated in the steepest
descent direction of the objective function. This procedure is
repeated until convergence.

In this work, we argue that the choice of SGD is strongly
sub-optimal. In fact, the main drawback of SGD is that it
requires a careful tuning of the global learning rate η, which
is then used for updating all model parameters, regardless of
their peculiarities. However, if an entity x ∈ EG occurs in a
limited number of triples in G, the corresponding embedding
vector ex ∈ Rk will be updated less often, and it will require
a much longer time to be learned. For such a reason, SGD
may be very time-consuming, and the training process may
require days of computation for large KGs [8]. Intuitively, a
possible solution to this problem consists in associating smaller
learning rates to parameters updated more often, such as the
embedding vectors of entities appearing more frequently, and
larger learning rates to parameters updated less often.

Adaptive Learning Rates. In order to reduce the time
required for learning all entity and predicate embeddings,
in this work we propose leveraging Adaptive Per-Parameter
Learning Rates. While SGD uses a global, fixed learning rate
η for updating all parameters, we propose relying on methods
for estimating the optimal learning rate for each parameter,
while still being tractable for learning very large models.

We consider two highly-scalable criteria for selecting the
optimal learning rates, namely the Momentum method [15] and
AdaGrad [16]: they specify alternate ways of computing the
parameters update ∆t, defined in Alg. 1 on line 6.

Momentum Method. The idea behind this method is
to accelerate the progress along dimensions where the sign of
the gradient does not change, while slowing the progress along
dimensions where the sign of the gradient continues to change.
The update rule in this method is defined as follows:

∆t ← ρ∆t−1 − ηmgt,
where ηm ∈ R is a user-defined hyper-parameter.

AdaGrad. This method is based on the idea that the
learning rate of each parameter should grow with the inverse
of gradient magnitudes. The update rule in AdaGrad is:

∆t ← −
ηa√∑t
j=1 g

2
j

gt,

where ηa ∈ R is a user-defined hyper-parameter. AdaGrad
adds nearly no complexity, it has very strong convergence
guarantees [16], and it has shown remarkable results on large
scale learning tasks in distributed environments [17].

V. EMPIRICAL EVALUATIONS

This section is organized as follows. In Sect. V-A we
describe experimental settings, datasets and evaluation metrics.
In Sect. V-B, we show that adaptive learning rates sensibly
improve both the efficiency of the learning process, and the
predictive accuracy of embedding models. In Sect. V-C, we
empirically evaluate the novel embedding models proposed in
Sect. III, by training them using adaptive learning rates.

A. Experimental Settings

In the experiments, we followed the same evaluation pro-
tocols adopted in [6] and [11]. Specifically, in Link Predic-
tion experiments, we used the two datasets released in [6],
namely WORDNET (WN18) and FREEBASE (FB15K). In
Triple Classification experiments, we used the two datasets
released in [11]: WORDNET (WN11) and FREEBASE (FB13).
Each dataset is composed by a training, a validation and a
testing set of triples: their size is summarized in Tab. II.

Link Prediction. In these experiments, we used the met-
rics proposed in [6] for evaluating the rank of each test triple.
In particular, for each test triple 〈s, p, o〉, its object o is replaced
with every entity õ ∈ EG in the KG G in turn, generating
a set of corrupted triples in the form 〈s, p, õ〉. The scores of
corrupted triples are first computed by the model, then sorted in
descending order, and used to compute the rank of the correct
triple. This procedure is repeated by corrupting the subject.
Aggregated over all the test triples, this procedure leads to the
following two metrics: the averaged rank, denoted by MEAN
RANK, and the proportion of ranks not larger than 10, denoted
by HITS@10. This is referred to as the RAW setting. In the
FILTERED setting, corrupted triples that exist in either the
training, validation or test set are removed before computing
the rank of each triple. In both settings, a lower MEAN RANK
is better, while a higher HITS@10 is better.

Triple Classification. In these experiments, we used the
metrics proposed in [11] for evaluating the classification accu-
racy of the model on test triples, each labeled either positive
or negative. Each test triple 〈s, p, o〉 is classified as positive
iff its score is higher than a predicate-specific threshold δp,
i.e. fp(es, eo) ≥ δp. Otherwise, it is classified as negative.
Predicate-specific thresholds δp are determined by maximizing
the classification accuracy on the validation set.

B. Evaluation of Adaptive Learning Rates

Learning Time. For comparing Momentum and Ada-
Grad with SGD on the task of solving the optimization problem
in Eq. 1, we empirically evaluated such methods on the task
of learning the parameters in TransE on WN18 and FB15K,
using the optimal hyper-parameter settings reported in [6]:
k = 20, γ = 2, d = L1 for WN18, and k = 50, γ = 1,
d = L1 for FB15K. Following the evaluation protocol in [18],



Fig. 1: Average loss (the lower, the better) across 10 TransE parameters learning tasks on the WORDNET (WN18) and FREEBASE
(FB15K) datasets, using the optimal TransE settings reported in [6]. For each optimization method, we report the hyper-parameter
values that achieve the lowest average loss after 100 epochs, and the corresponding average loss values.
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TABLE III: Link Prediction and Triple Classification Results: Test performance of several link prediction methods on the
WORDNET and FREEBASE datasets. Results show the MEAN RANK (the lower, the better) and HITS@10 (the higher, the better)
for both the RAW and the FILTERED settings [6], and the CLASSIFICATION ACCURACY (the higher, the better) [11].

Dataset WORDNET (WN18) FREEBASE (FB15K)

Metric MEAN RANK HITS@10 (%) MEAN RANK HITS@10 (%)
RAW FILT. RAW FILT. RAW FILT. RAW FILT.

Unstructured [9] 315 304 35.3 38.2 1,074 979 4.5 6.3
RESCAL [12] 1,180 1,163 37.2 52.8 828 683 28.4 44.1

SE [10] 1,011 985 68.5 80.5 273 162 28.8 39.8
SME Linear [9] 545 533 65.1 74.1 274 154 30.7 40.8

SME Bilinear [9] 526 509 54.7 61.3 284 158 31.3 41.3
LFM [13] 469 456 71.4 81.6 283 164 26.0 33.1

TransE [6] 263 251 75.4 89.2 243 125 34.9 47.1
TransEA 169 158 80.5 93.5 189 73 44.0 60.1

Dataset WORDNET
(WN11)

FREEBASE
(FB13)

Metric ACC. (%) ACC. (%)
SME bil. [9] 70.0 63.7
TransE [6] 75.85 70.9
TransEA 85.84 74.91

we compared the optimization methods by using a large grid
of hyper-parameters. Let Gη = {10−6, 10−5, . . . , 101} and
Gρ = {1 − 10−4, 1 − 10−3, . . . , 1 − 10−1, 0.5}. The grids
of hyper-parameters considered for each of the optimization
methods were the following:

• SGD and AdaGrad: rate η, ηa ∈ Gη .
• Momentum: rate ηm ∈ Gη , decay rate ρ ∈ Gρ.

For each possible combination of optimization method and
hyper-parameter values, we performed an evaluation consisting
in 10 learning tasks, each using a different random initializa-
tion of the model parameters.

Fig. 1 shows the behavior of the objective (loss) function
for each of the optimization methods, using the best hyper-
parameter settings selected after 100 training epochs. We can
immediately observe that, for both WORDNET (WN18) and
FREEBASE (FB15K), AdaGrad (with rate ηa = 0.1) yields
sensibly lower values of the loss function than SGD and
Momentum, even after very few iterations (< 10 epochs). The
duration of each epoch was similar in all methods: each epoch
took approx. 1.6 seconds in WORDNET (WN18), and approx.
4.6 seconds in FREEBASE (FB15K) on a single i7 CPU.

Quality of Learned Models. We also measured the
quality of models learned by AdaGrad, in terms of the MEAN
RANK and HITS@10 metrics, in comparison with SGD. For
this purpose, we trained TransE using AdaGrad with ηa = 0.1
for 100 epochs (denoted by TransEA) and compared it with
results obtained with TransE from the literature, on Link
Prediction and Triple Classification tasks on the WORDNET

and FREEBASE datasets. Hyper-parameters were selected ac-
cording to the performance on the validation set, using the
same grids of hyper-parameters used for TransE in [6] for the
Link Prediction tasks, and in [14] for the Triple Classification
tasks. The results obtained by TransEA, in comparison with
state-of-the-art results reported in [6] and [14], are shown
in Tab. III. Despite the sensibly lower number of training
iterations (we trained the model using AdaGrad for only
100 epochs, while in [6] and [14] TransE was trained using
SGD for 1,000 epochs), TransEA yields more accurate link
prediction models (i.e. with lower MEAN RANK and higher
HITS@10 and ACCURACY values) than every other link
prediction model in the comparison.

C. Evaluation of the Proposed Novel Embedding Models

In this section, we evaluate the embedding models inspired
by TransE and proposed in Sect. III: ScalE, TransE+ and
ScalE+. Model hyper-parameters were selected according
to the performance on the validation set: we selected the
embedding vector dimension k in {20, 50, 100, 200, 300}, the
similarity function sim(x,y) in {−‖x−y‖1,−‖x−y‖2,xTy},
and the margin γ in {1, 2, 5, 10}. All models were trained using
AdaGrad, with ηa = 0.1, for only 100 epochs.

Results are summarized in Tab. IV. We can see that, de-
spite the very different geometric interpretation, the proposed
embedding models achieve sensibly higher results in terms
of HITS@10 in comparison with every other link prediction
models outlined in Sect. III. An explanation is that TransE [6]
and the proposed models TransE+, ScalE and ScalE+ have



TABLE IV: Link Prediction Results: Test performance of the embedding models proposed in Sect. III on the WORDNET and
FREEBASE datasets. Results show the MEAN RANK (the lower, the better) and HITS@10 (the higher, the better) [6].

Dataset WORDNET (WN18) FREEBASE (FB15K)

Metric MEAN RANK HITS@10 (%) MEAN RANK HITS@10 (%)
RAW FILT. RAW FILT. RAW FILT. RAW FILT.

TransE from [6] SGD 263 251 75.4 89.2 243 125 34.9 47.1
TransE AdaGrad 161 150 80.5 93.5 183 63 47.9 68.2

TransE+ from Sect. III AdaGrad 159 148 79.6 92.6 196 78 44.9 62.4
ScalE from Sect. III AdaGrad 187 174 82.7 94.5 194 62 49.8 73.0

ScalE+ from Sect. III AdaGrad 298 287 83.7 95.5 185 59 50.0 71.5

a limited statistical capacity in comparison with other mod-
els. For such a reason, they are less prone to underfitting
than other more expressive link prediction models, such as
RESCAL [12], SME [9] and NTN [11].

In each experiment, the proposed models ScalE and
ScalE+ always improve over TransE in terms of HITS@10.
We can clearly see that, by leveraging: (i) Adaptive learning
rates, and (ii) The proposed embedding models ScalE and
ScalE+, we were able to achieve a record 95.5% HITS@10
on WORDNET, and a 73.0% HITS@10 on FREEBASE. These
results are sensibly higher than state-of-the-art results reported
in [6]. It is also remarkable that, during learning, the proposed
method required a much lower learning time (100 epochs,
approx. 30 minutes on FREEBASE, on a single CPU) in
comparison with [6] (1,000 epochs, and careful rate tuning).

A significantly lower training time – from days, as reported
by [8], to minutes – can sensibly improve the applicability of
this family of link prediction models in the Web of Data.

VI. CONCLUSIONS

We focused on the problem of link prediction in large
Knowledge Graphs [4]: recently, KG embedding models such
as TransE [6] achieved new state-of-the-art results on this
problem. In this paper, we proposed a method for sensibly
reducing the learning time in embedding models, and proposed
a set of new models with interesting scalability properties.
We extensively evaluated the proposed methods in several
experiments on real world large datasets: our results show a
significant improvement in terms of predictive accuracy over
state-of-the-art link prediction methods, while significantly
reducing the required training time by an order of magnitude.
This contribution improves both the effectiveness and appli-
cability of embedding models on large and Web-scale KGs.
Source code and datasets for reproducing the experiments in
this paper are available on-line, with an open source license 4.
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