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In the context of semantic knowledge bases, among the possible problems that may be

tackled by means of data-driven inductive strategies, one can consider those that require the
prediction of the unknown values of existing numeric features or the de¯nition of new fea-

tures to be derived from the data model. These problems can be cast as regression problems

so that suitable solutions can be devised based on those found for multi-relational databases.

In this paper, a new framework for the induction of logical regression trees is presented.
Di®erently from the classic logical regression trees and the recent fork of the terminological

classi¯cation trees, the novel terminological regression trees aim at predicting continuous

values, while tests at the tree nodes are expressed with Description Logic concepts. They are
intended for multiple uses with knowledge bases expressed in the standard ontology

languages for the Semantic Web. A top-down method for growing such trees is proposed as

well as algorithms for making predictions with the trees and deriving rules. The system that

implements these methods is experimentally evaluated on ontologies selected from popular
repositories.

Keywords: Regression tree; knowledge bases; prediction.

1. Introduction

Next generation knowledge bases will likely rely on Web-scale distributed reposi-

tories of resources. These will be indexed in terms of shared ontologies that will be

expressed through standard machine-interpretable representations. Indeed, among

its various facets, the Semantic Web is a Web of data. A growing number of struc-

tured data sources are distributed over the Web and comply with the new standards

for data integration. Semantic Web technologies provide infrastructures for novel

applications to be enabled by the possibility of querying, making inferences, etc. on

such knowledge bases.

An interesting problem may concern making predictions on numeric features of

the resources contained in such knowledge bases. Learning predictive models it is

possible to extend the factual knowledge therein and automatically derive rules to
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enrich the reasoning capacities, e.g. learning numeric functions (such as ranking

functions, reinforcement functions for planning, etc.) that are hard to express

analytically.

1.1. Scenarios

In this paper, we focus on regression problems in the context of Web ontologies. Such

problems naturally emerge in various scenarios. In a possible scenario, suppose a

(human/software) agent is looking for the distance to a certain place of interest. It

may query a knowledge-based system that contains a repository of spatial annota-

tions about places and may contain a query-answering component which may be also

able to perform spatial reasoning. Would the query system be able to provide an

answer when required information to answer the query is missing or non-derivablea

through automated reasoning procedures?

An even more complex scenario is one where the numeric feature to be found for a

given resource is not analytically formalized in the knowledge base through a proper

relationship. Suppose an organization wants to predict the share of a given TV

program given a categorization of TV programs and a history of shares registered

in the past for other programs (see also the next Ex. 1, where this scenario is

formalized). Scoring a certain share can be hardly modeled with a relationship in the

knowledge base, i.e. its de¯nition can be only extensional: an (incomplete) enumer-

ation of cases observed in the past.

Determining or predicting the ¯ller of a real-valued role is not a standard inference

service for DL reasoners. Even quantifying the degree of membership with respect to

a given query concept may be cast as a regression problem (especially when reasoner

is not able to provide a positive or negative answer). An inductive inference service

that is able to at least suggest an answer to these problems may enhance the query

answering components of semantic repository managers with further reasoning

capabilities.

1.2. Solutions

The induction of decision trees is among the most well-known machine learning

techniques, along with its extensions towards logical representations in clausal form

[14, 16, 3]. Together with several adaptations of classical learning algorithms based

on re¯nement operators for inducing DL concepts (e.g. see [17]), the general tree

induction framework has recently been extended to cope with the DL languages

supporting the Web ontologies [7]: the tests at the internal nodes of a logical

decision tree are represented through DL concepts (class expressions). Compared to

the other logic representations of the tree tests, ours can naturally comply with the

semantics of the data expressed in the standard languages for the Semantic Web

aSpatial reasoning systems are generally not able to perform inductive inferences.

February 20, 2013 9:41:19am WSPC/214-IJSC 00158 ISSN: 1793-351X 1st Reading

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

2 N. Fanizzi et al.



context. The resulting terminological decision trees have been used as alternative

models for classifying individuals and/or for inducing new concept descriptions from

examples.

Following [16], the setting is further extended to address regression rather than

classi¯cation problems: leaf-nodes have to indicate the values for a target function to

be learned. These values may be provided as constants (real numbers) or even

through more complex parametric models (e.g. linear functions) to be applied to the

individuals routed to the given leaf.

We introduce a new type of logical model trees called Terminological Regression

Trees. We propose a tree-induction algorithm that adopts a classical top-down

divide-and-conquer strategy with the use of re¯nement operators for DL concept

descriptions [13, 17, 6]. An ad hoc evaluation measure is adopted as a heuristic for

deciding the test concepts that are installed at the internal nodes.

In an extensive experiment, the implementation of the proposed algorithms was

applied to real ontologies selected from popular repositories. Arti¯cial problems were

crafted by considering the prediction of the values of a continuous target function

through trained regression trees. The experiments show empirically the feasibility of

the method as very limited errors were observed on average.

First-order trees may be considered for various applications such as clustering,

categorization or numeric prediction. In particular, the induction of regression trees

may be considered an alternative way for learning ranking functions, a problem that

has also been considered in the context of DL knowledge bases [8].

1.3. Plan

In the remainder of this paper, we brie°y introduce the basics of the underlying

representation (Sec. 2). Then, the learning problem is formalized (Sec. 3) and we

present a solution based on terminological regression trees presenting the algorithms

for growing them, deriving rules and for making predictions (Sec. 4). Experiments

proving the e®ectiveness of the approach are reported in Sec. 5. Finally, possible

applications and further developments are discussed in Sec. 6.

2. DL Knowledge Bases

We are targeting OWL knowledge bases with no commitment to a speci¯c version or

dialect. In order to make the paper self-contained, we shortly recall the essentials of

the representation and reasoning adopted. More details can be easily found by

consulting the reference handbook for DLs [1].

Roughly, in the terminological formalisms concepts and relations are used to

describe classes of resources in a domain and relationships between them. Primitive

concepts NC ¼ fC ;D; . . .g are interpreted as subsets of a domain of objects

(resources) and primitive roles NR ¼ fR; S; . . .g are interpreted as binary relations

February 20, 2013 9:41:19am WSPC/214-IJSC 00158 ISSN: 1793-351X 1st Reading

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Numeric Prediction on OWL Knowledge Bases Through Terminological Regression Trees 3



on such a domain (properties). Individuals represent the objects through names

chosen from the set NI ¼ fa; b; . . .g. The meaning of the descriptions is de¯ned by an

interpretation I ¼ ð�I ; �I Þ, where �I is the domain of the interpretation and the

functor �I stands for the interpretation function, mapping each individual a to some

aI 2 �I and hence, the intension of concepts and roles to their extension (respec-

tively, a subset of �I and a binary relation de¯ned on �I ).

Complex concept descriptions are built using atomic concepts (including the top

and bottom concepts denoted, resp., with > and ?) and primitive roles by means of

speci¯c constructors. In ALC the following constructors are allowed: full concept

negation (:C ), concept conjunction (denoted with C u C 0) and, then also disjunc-

tion (denoted with C t C 0), and the existential restriction and the value restriction

on roles, denoted, resp. with 9R:C and 8R:C , selecting the individuals in the domain

related through R to (some, resp. all ) individuals that belong to C .

Additional constructors extend the expressiveness of the ALC language. Besides,

concrete domains ðDÞ with their speci¯c semantics can be dealt with. They may

include basic data types, such as numerical types, strings, etc., but also more complex

types, such as tuples of the relational calculus or time intervals. In this paper, the

interest is limited to the case of real values, in case one wants to encode the learning

problem in the same language.

The notion of subsumption between concepts is given in terms of the interpret-

ations: Given two concept descriptions C and D, C is subsumed by D, denoted by

C v D, i® for every interpretation I of T it holds that C I � DI . Hence, C � D

amounts to C v D and D v C . The interpretations of interest will be limited to

those satisfying the axioms in the knowledge base. A knowledge base K ¼ hT ;Ai
contains two components: a TBox T and an ABox A. T is a set of terminological

axioms C v D, yet we will consider only inclusions A v D, where A 2 NC is a con-

cept name (atomic) and D is a concept description given in terms of the language

constructors. The ABoxA contains extensional assertions (ground facts) on concepts

and roles, e.g. CðaÞ and Rða; bÞ, meaning, respectively, that aI 2 C I and

ðaI ; bI Þ 2 RI . An interpretation satisfying all the axioms in the knowledge base is

said to be a model for it. Hence, the usual notions of satis¯ability, consistency, etc.

apply also for these logics.

The most important inference service from the inductive point of view is instance

checking [1] which amounts to ascertain class-membership assertions: K � C ðaÞ,
where K is the knowledge base a is an individual name and C is a concept de¯nition

given in terms of the concepts accounted for in K.

An important di®erence with clausal logic (multi relational databases), where the

logic decision trees have stemmed from, is the open-world assumption (OWA) which

has consequences on answering to class-membership queries. Thus it may happen

that an object that cannot be proved to belong to a certain concept is not necessarily

a counterexample for that concept. That would only be interpreted as a case of

insu±cient (incomplete) knowledge for proving the assertion.
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3. Regression Problems with DL Knowledge Bases

Given a DL knowledge base as the source for the background knowledge and a target

real-valued function (which may have been encoded as a functional role) whose

analytic form is unknown (or too complex to be expressed), one may suppose that

domain experts are able to provide the values of such a function for a limited number

of individuals, e.g. in the form of role assertions.

In this setting, the objective is then to induce an (approximated) analytic function

which can exhibit the same behavior of the target function on the training individ-

uals and predict approximately correct values for further ones. More formally:

De¯nition 1. Let K ¼ ðT ;AÞ be a DL knowledge base, with IndðAÞ denoting the

individuals occurring in A.

Given

. a target function f : IndðAÞ ! R

(or a functional role R ranging on the concrete domain R)

whose analytic form is unknown;

. a sample of (training) individuals for which the f -value is known, i.e.

f (resp. R) may be partially (extensionally) de¯ned:

SðAÞ ¼ fða; f ðaÞÞ j a 2 IndðAÞg � IndðAÞ
(resp. SðAÞ ¼ fða; vÞ j Rða; vÞ 2 Ag)

. a small " > 0

Build a regression model h : IndðAÞ ! R so that:

jhðaÞ � f ðaÞj < "; 8a 2 IndðAÞ

One may consider the case of relevance feedback where the evaluation of Web

resources may be exploited to learn an analytical model which adapts as new

resources become available. Preference learning in the context of ontologies is

another closely related task.

An example on the domain of TV Programs may better illustrate the learning

task as follows:

Example 1. (TV programs) Suppose a knowledge base concerning TV Programs

is available whose terminology allows for expressing information about the programs,

such as their type, production year, broadcast date, etc. Suppose one wants to

predict the share, i.e. to learn a share function based on the available terminology

and assertions known about the TV programs. The TBox T may include the

background knowledge shown in Fig. 1.

Besides, since some concepts are meant to be disjoint, suitable axioms must be

added to T :

fFilmv :ðTalkShow t SerialÞ;
Showv :ðFilm t SerialÞ;

SoapOperav :ðSitCom t FilmÞ; . . .g
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The ABox may contain the following assertions:

fSitComðSEINFELDÞ; onðSEINFELD; NBCÞ;
broadcastOnðSEINFELD; 20101009Þ;
starringðSEINFELD; JL DREYFUSÞ;
TalkShowðLATESHOWÞ; onðLATESHOW; CBSÞ;
hostedByðLATESHOW; D LETTERMANÞ;
broadcastOnðLATESHOW; 20100212Þ;
DocumentaryðSICKOÞ; onðSICKO; CURRENTÞ;
directedByðSICKO; M MOOREÞ;
broadcastOnðSICKO; 20101111Þ; . . . g � A

Suppose the intended function to be predicted is the share of a given program.

A sample of this function may contain the following couples-

SðAÞ ¼ fðSEINFELD; 21:5%Þ; ðLATESHOW; 11:2%Þ;
ðSICKO; 23:1%Þ; . . .g

Note that this problem di®ers from settings where the aim is building a classi¯er

through logical or statistical methods employing, for example, support vector

machines [4], which may be tackled through more suitable kernel machines (for

regression). Further related settings will not be discussed further.

4. Growing and Exploiting Terminological Regression Trees

In the context of the clausal representations adopted in inductive logic programming

(ILP), ¯rst-order logical trees (FOLTs) are de¯ned [3] as binary trees in which

(1) the inner nodes contain tests in the form of conjunctions of literals;

(2) left and right branches stand, resp., for the truth-value (resp. true and false)

determined by the test evaluation;

Fig. 1. Background knowledge for the TV-rating example.
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(3) di®erent nodes may share variables, yet a variable that is introduced in a certain

node must not occur in the right branch of that node.

In the case of regression trees [14�16], the leaf-nodes contain a local regression

model in one of the forms that will be discussed later.

We extend the original de¯nition along various directions:

De¯nition 1. Terminological Regression Trees (TRTs) are FOLTs whose internal

nodes contain DL concept descriptions as tests and whose leaf-nodes contain

functions (local models) to be evaluated to get a predicted value.

In the simplest form leaf-nodes represent constant functions that return average

values for all the instances that reach those leaves during the evaluation phase (see

below). Figure 2 shows a TRT in the context of the knowledge base proposed in

Example 1.

We will consider a generic binary tree structure whose nodes N are tuples con-

taining the following ¯elds:

. test concept description: N .test;

. set of training instances rooted at the node: N .set;

. regression model: N .model;

. references to the subtrees, resp. N .left and N .right.

We now show how to grow TRTs and how to use them for predicting values.

4.1. Induction of TRTs

While DL concept induction algorithms generally adopt a separate-and-conquer

covering strategy [13, 6], the tree learning procedures adopt a divide-and-conquer

strategy.

Fig. 2. A simple example of a TRT referring to the problem introduced in Example 1.

February 20, 2013 9:41:22am WSPC/214-IJSC 00158 ISSN: 1793-351X 1st Reading

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Numeric Prediction on OWL Knowledge Bases Through Terminological Regression Trees 7



In the case of TDTs [7], the FOLT induction procedure is adapted to deal with

internal nodes that contain DL concepts to be interpreted w.r.t. their semantics.

Since the choice of such nodes involves a specialization task this may depend on the

properties of the particular space of concept descriptions. The other di®erence is

in the policy for labeling the leaf-nodes. While for decision trees it su±ces to indicate

the target class for the instances that are routed to those nodes, for regression trees

the (regression) model needed for the local regression problem should be decided [18].

As regards the ¯rst issue, the subsumption relationship v induces a partial order

on the space of DL concept descriptions. Then, a specialization task can be cast as a

search in such a partially ordered space. In such a setting, suitable operators to

traverse the search space are required [17]. As this space is very large (especially from

a syntactic viewpoint) and may turn out to exhibit a lot of redundancy (equivalent

concepts), also depending on the expressiveness of the underlying DL logic, some bias

is needed to constrain the search. In [7] only re¯nement operators working on ALC
constructors are used, even in the context of ontologies represented through more

expressive languages, thus trading completeness for e±ciency. A further constraint

that can be considered leads to prefer candidate specializations for which the training

instances tend to exhibit a de¯nite membership, discouraging those concepts for

which individuals show an unknown membership (due to the OWA).

The TRT-induction procedure adapts the schema implemented by the extensions

of TILDE towards ¯rst order regression [3]. A sketch of the main procedure is reported

as Algorithm 1. It re°ects the standard tree induction algorithms with the addition of
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the treatment of unlabeled training individuals. The procedure can be invoked

passing > as starting concept and a set of individuals containing all training

examples (for which the value of the target function is known).

The initial conditional statement takes care of the base case for the recursion,

namely when a limited number of individuals got sorted to the current subtree root-

node (w.r.t. some parameter m) or the local standard deviation (sd(LS)) is low w.r.t

the global one (TSD), i.e. their ratio is less than a threshold �, then the resulting leaf

value is decided on the grounds of the preferred local regression algorithm, installing

the resulting regression model hð�Þ based on the values in the local set of individuals

LS ¼ fa1; . . . ; ang [18]:

(1) a constant function, i.e. a real value v that averages the values of the training

instances that placed at the leaf node: hðxÞ ¼ v ¼
Xn

i¼1
f ðaiÞ=jLS j;

(2) the value that may be determined on-the-°y, for a given instance x, by means

of a simple instance-based regression procedure:

hðxÞ ¼
Xn

i¼1
wif ðaiÞXn

i¼1
wi

ð1Þ

where the weights may be selected as inversely proportional to the distance,b e.g.

wi ¼ ½dðx; aiÞ��2;

(3) extending the idea of the previous point, a regression algorithm that can operate

with a limited number of training instances (e.g. a radial basis function network),

may approximate the value computation as follows:

hðxÞ ¼
Xn

i¼1
f ðaiÞ�ðdðx; aiÞÞXn

i¼1
�ðdðx; aiÞÞ

ð2Þ

using a Gaussian kernel �, for instance.

In the following recursive part of the algorithm (lines 7�12) a list SPC of (satis¯able)

candidate concept description are randomly generated (line 7), that can specialize

the current description C . As mentioned above, the generation is constrained to

produce concepts that can really discriminate the individuals in LS, so that they can

contribute as good node tests.

Then (line 8), the best one (C �) is selected (invoking SELECTBESTSDR) in terms of

a purity criterion based on the subsets of individuals resulting from the membership/

non-membership determined by the given test concept description. The measure is

derived from information gain. In the DL setting the problem is made more complex

by the presence of instances which cannot be labeled as members or non-members

w.r.t. the given concept. Their contribution may be considered as proportional to the

prior distribution of positive and negative examples. We propose the following

bSee similarity or distance functions surveyed in [5], for example.
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standard deviation reduction measure:

SDRðC ; SÞ ¼ c0 std devðSÞ �
X

S 02fSþ;S�g

jS 0j
jS j std devðS 0Þ

0
@

1
A ð3Þ

where S is divided into Sþ, S� and S0 depending on the instance check of the

individuals w.r.t. C (resp. membership, non-membership, uncertain membership

subsets) and c0 is a discount factor for the missing values, c0 ¼ jS nS0j=jSj.
Once the best description C � has been selected, it is installed (line 10) as the

current subtree root and the sets of individuals sorted to this node are subdivided

(line 9) according to their classi¯cation w.r.t. such a concept. Note that unlabeled

individuals must be sorted to both subtrees.

Finally the construction of the left and right subtrees is requested recursively

(lines 11�12), passing the sets of individuals resulting from the split and the concept

descriptions C u C � and C u :C � in their simpli¯ed version. Function SIMPLIFY is

meant to apply normalization and simpli¯cation rules reducing the structural com-

plexity of the concepts.

4.2. Prediction

The TRTs are to be used for predicting the values of numeric functions for given

individuals. Algorithm 2 illustrates the related procedure that is supported by some

auxiliary functions: LEAF() to determine whether a node is a leaf of the argument tree,

ROOT() which returns the root node of the tree passed as argument, and EVAL() which

returns evaluation w.r.t. the given model.
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Given an individual a and a TRT T , the algorithm, starting from its root node,

simply searches for the node containing the local model for evaluation a. In order to

¯nd such a leaf-node, it checks the class-membership w.r.t. the test concept in the

current node, say C , i.e. if K � C ðaÞ, sorting a to the left branch if the test is

successful while the right branch is chosen if K � :CðaÞ. Eventually the local model

is found in a leaf-node.

Note that the open-world semantics may cause the failure of both left and right

branch tests. This special case may be treated by evaluating the individual w.r.t. a

default model (e.g. by averaging) based on the set of training instances that were

rooted at the internal node. Alternatively, this case can be avoided by assimilating it

into the non-membership case or, equivalently, by considering K 6� CðaÞ as right-

branch test (i.e. a single else-branch of the conditional statement).

4.3. Rule derivation from TRTs

Similarly to decision trees and, in particular, to FOLTs, each node in a path from the

root to a leaf-node may be used to build a concept description through consecutive

re¯nements. Specialization is performed in various ways, for example: (1) by adding a

concept description as a new conjunct, (2) by re¯ning a sub-description in the scope

of an existential or universal restriction or (3) by narrowing the interval in a number

restriction (which may be allowed by the adopted DL language, e.g. ALN or ALCQ,

see [1]).

It is possible to derive a list of rules from a TRT. The procedure (see Algorithm 3),

to be invoked with getRulesðT ;>Þ, unravels all the paths leading to leaf-nodes

which will constitute the consequents; for each of them, an antecedent is formed by

tracking back from the leaf along the path and collecting the intermediate test

concepts. In this way, each path yields a di®erent rule with a conjunctive antecedent

that represents a local (partial) de¯nition of the target function D ! hðaÞ. The ¯nal
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consequent depends on the type of model adopted: it may be based on the local set of

training individuals and then it can be evaluated on-the-°y or it may be a parametric

function whose coe±cients vary from leaf-node to leaf-node.

As an example, looking back at the TRT depicted in Fig. 2, a rule de¯nition

that would be extracted for the leftmost path is: News u TalkShow u 9on:
NationalTVNetwork u 9dealsWith:Sports ! 25:4%.

A rule language may be the natural candidate for encoding such list of rules in a

DL program, so that a suitable reasoner may be employed for the prediction task

instead of an ad hoc one dealing with TRTs.

5. Experimental Evaluation

Preliminary experiments with the implementation of the algorithms presented

showed encouraging results. However speci¯c standard datasets to test them are still

hard to ¯nd (i.e. ontologies that are rich with numeric datatype assertions). In order

to provide more than a mere proof of concept, arti¯cial prediction problems on real

ontologies to be solved by inducing TRTs have been automatically generated.

5.1. Setup

A number of OWL ontologies on various domains have been selectedc: MDM0.73,

SURFACE WATER MODEL (SWM), WINE, UNITS, IMDB, FAMILY TREE (FAMILY) TRANS-

PORTATION (TRANS), NEW TESTAMENT NAMES (NTN), the BioPax Glycolysis ontology

(BioPaxG), the FINANCIAL ontology and one large ontology generated by the Lehigh

University BenchMark (LUBM). Table 1 summarizes important details concerning

these ontologies, in terms of the numbers of concepts (classes), object and datatype

properties and individuals.

For each ontology, arti¯cial learning problems were created on-the-°y as follows:

20 class expressions were randomly generated by composition of 2 through 8 classes

usingd the ALC constructors in OWL2. For each class expression C , the target

function fC to be approximated assesses the likelihood of membership of the given

individual to C . The value of fC : IndðAÞ ! ½0; 1� for each individual x was assigned

by recurring to a simple procedure based on density estimation that returned the

likelihood measure:

PrðhC ðxÞ ¼ þ1 j xÞ ¼ �C
þ1D̂þ1ðxÞ

�C
�1D̂�1ðxÞ þ �C

þ1D̂þ1ðxÞ
ð4Þ

cThey are publicly available in well-known ontology repositories, the Prot�eg�e library (http://protege.

stanford.edu/plugins/owl/owl-library) and the TONES repository (http://owl.cs.manchester.ac.uk/

repository).
dNote that since the ontologies employed in the experiment are expressed in various DL languages, see

Table 1, these class expressions are represented in a more expressive language than ALC.
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where hC is a binary classi¯cation function (induced through an auxiliary method,

the k-nearest neighbors [11], with k set to
ffiffiffiffiffi
N

p
, N being the number of training

instances for the problem), the �C
v 's stand for prior probabilities of getting the

respective classi¯cation value in f�1;þ1g and the D̂v's are estimates of the density

function for the given classi¯cation value, around the input individual x. Hence every

individual in IndðAÞ was assigned a value fC þ ", for each C , where " < :001 is a small

random perturbation. The prior distribution of positive and negative instances were

computed for each ontology. A collection of couples hxi; fC ðxiÞi constituted the

dataset for a learning problem.e

In the experiment design a 10-fold cross validation strategy was adopted. The

performance was evaluated measuring the average error the value predicted for the

test individuals w.r.t. the various random class expressions using the induced trees

hC ðxÞ compared to fC ðxÞ. The default settings (threshold � ¼ :05 and m ¼ 5) were

considered (see Algorithm 1). The PELLET reasoner (v. 2.2.2) was employed for the

required reasoning services.

5.2. Results

Due to space limitation, we can only report aggregate results of the learning pro-

blems. Table 2 shows, for each ontology, the outcomes in terms of the average error

and the related standard deviation over the 10 folds averaged also over the various

datasets for the class expressions generated.

Preliminarily, we found that the search procedure was quite accurate: it made few

critical mistakes, especially when the concepts considered are known to have many

instances in the ontology. Indeed, the overall average error is 1.39E-2 in an interval of

[1.00E-6, 2.99E-2] whose extrema correspond, resp., to the values observed for the

ontologies TRANS and LUBM. The standard deviations are also very limited (overall

average 1.10E-2) suggesting the method was quite stable over the various learning

Table 1. Facts concerning the ontologies employed in the experiments.

Ontology DL language #concepts #object prop's #datatype prop's #individuals

UNITS ALUOFðDÞ 12 3 5 103

MDM0.73 ALCHOFðDÞ 196 22 3 112
SWM ALOF 19 9 0 115

WINE ALCOFðDÞ 75 12 1 161

TRANS ALCHðDÞ 445 89 4 183

IMDB ALINðDÞ 7 5 13 302
BIOPAXG ALCIFðDÞ 74 70 40 323

FAMILY SHIOFðDÞ 23 56 6 436

LUBM ALRþHIðDÞ 55 36 11 555
NTN SHIFðDÞ 47 27 8 676

FINANCIAL ALCIF 60 16 0 1000

eA snippet of the code for random concept generation and some of the generated datasets will be available

at: http://lacam.di.uniba.it/nico/research/ontologymining.html.
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problems and ontologies. The cases of ontologies for which this measure was higher

are probably due to the limited number of available examples.

The elapsed time was quite short (considered the current prototypical stage of the

implementation, which lacks possible optimizations): for all the replications of the

experiment (training+test) on the entire set of generated class expressions, they

range from a few minutes to about 1.5 hours for a whole experiment on a medium

sized ontology (in terms of number of individuals) including the time consumed by

the reasoner for the deductive instance checks.

From a qualitative viewpoint, it must be noticed that the class expressions that

may derived from the tree branches generally tend to be more complex than the

original ones that were generated for the related learning problems.

The height of the resulting TRTs varies a lot among the various learning pro-

blems. This size can be controlled by tweaking the two parameters m and �. Further

experiments (not reported here) showed that lower values have the e®ect of

increasing the height of the TRTs and, as expected, their precision (lower average

error). However, since the training phase is generally more computationally

expensive than predicting with the obtained TRTs a tradeo® may be made setting

higher values for these parameters. This may be further extended to work in an

interactive mode letting a user decide on whether to further expand a node or

transform it to a leaf.

In an ontology population perspective, the predicted values are interesting

because they suggest new assertions which cannot be logically derived by using a

deductive reasoner yet they might be used to complete a knowledge base, e.g. after

being validated by ontology engineers and domain experts.

5.3. Rank prediction in the linked user feedback LOD dataset

For verifying the applicability of the proposed TRT induction method in a real world

context, it was evaluated on a real knowledge base, namely the Linked User Feedback

Table 2. Results of the experiments

on TRTs: average errors � standard

deviations.

Ontology Average error Std. dev.

UNITS 2.22E-2 2.21E-2

MDM0.73 1.07E-2 9.93E-3

SWM 1.30E-2 1.00E-2

IMDB 1.33E-2 1.31E-2
WINE 1.01E-2 4.97E-3

TRANS 1.00E-6 1.00E-9

BIOPAXG 1.89E-3 2.83E-3
LUBM 2.99E-2 2.19E-2

FAMILY 2.37E-2 2.28E-2

NTN 1.62E-2 7.86E-3

FINANCIAL 1.10E-2 5.66E-3
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(LUF) dataset.f LUF is part of an e®ort to semantically publishing and retrieving

user-generated feedbacks (such as ratings, comments and tags); as part of this e®ort,

ratings from the Linked Movie Data Baseg (LinkedMDB) were processed and inte-

grated into the CKANh dataset, which is part of the Linked Open Data (LOD) cloud.i

To evaluate the e®ectiveness and feasibility of our approach, it was applied to a

¯lm ranking prediction task: given a sample of ratings provided by users, the system

induces a ranking rule to predict ratings for unranked movies. In order to leverage

the large amount of structured knowledge available through the LOD cloud, we

extracted a fragment of the DBpedia [2] knowledge base related to movies ranked in

the LUF dataset.

For this task, we followed the procedure described in [12]: starting from resources

representing movies, a search was performed in the RDF graph (with recursion depth

1), and up to 1000 superclasses were extracted for each reached object. Such an

extraction process resulted in an OWL 2 EL fragment containing 4789 concepts, 59

object properties and 3082 individuals.

To ¯t to the RDF(S)'s lack of negation and disjunction [9], we used a `̀ LOD-

friendly" variant of TRT ��� during the TRT growth and prediction processes we

assumed that, given a splitting node associated to a concept C and a generic indi-

vidual a in K, K 6� C ðaÞ implies that K � :C ðaÞ (thus assuming a consistent com-

pletion of the knowledge base). An e®ect of this approach is that e.g. during the

PREDICT procedure, given a generic individual a and a splitting node associated to a

concept C , we follow the left-branch if K � CðaÞ and the right-branch otherwise,

and evaluate only at leaf nodes. At each step of the TRT growth process, the set of

candidate concepts to be associated to a split node was the set of all atomic concepts

in the ontology.

Figure 3 shows an example of an induced TRT, modelling the rankings given by

an user to movies in the LUF dataset.j From preliminary empirical evaluations on the

LUF dataset we observed that, in induced TRTs, the concepts near to the root

tended to be meaningful (e.g. y : English-languAgeFilms, y : AmericanFilms,

y : AmericanBiographicalFilms, y : 1990sRomanticComedyFilms); while, increas-

ing the distance from the root, there was an higher tendency in adding nodes

splitting apart very few individuals with a divergent ranking from the others

in that node, and the corresponding concepts were hardly meaningful (e.g.

y : FilmsBasedOnDarkHorseComics, y : FilmsBasedOnPlays). A possible cause for

this phenomenon is the curse of dimensionality: some concepts could improve the

SDR only because of statistical °uctuations within the data, instead of statistical

regularities. In future works, this could justify the use of feature selection as a

fhttp://thedatahub.org/dataset/linked-user-feedback
ghttp://www.linkedmdb.org/
hhttp://ckan.org/
ihttp://lamboratory.com/2011/12/17/linked-user-feedback/
jhttp://soa4all.isoco.net/luf/users/movies303. For brevity, we will use y as a pre¯x corresponding to the

http://dbpedia.org/classes/yago/ namespace
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pre-processing step prior to TRT induction (e.g. a restriction of the space of possible

candidate concepts for splitting nodes); the application of growth stopping criteria

and pruning procedures; and the use of scoring function di®erent from the simple

SDR [11, 10].

6. Conclusions and Developments

Methods for predicting numerical values in the context of DL knowledge bases were

investigated. Introducing the notion of terminological regression trees, which stem

from ¯rst order trees, we proposed induction algorithms as an adaptation of

standard top-down growing methods complying with the issues related to the

di®erent representation. We have shown how to exploit such models to predict

numerical values, such as those belonging to the range of a datatype or, generally, a

complex function that is hard to de¯ne analytically. Moreover, the regression trees

may be converted into rules which may be easily expressed in Semantic Web rule

languages. The experiments made on various ontologies showed that the method is

quite e®ective, its performance depending on the number (and distribution) of the

available training individuals.

We plan to extend this work in various directions. At this stage, the adopted

re¯nement operators search the potential candidate re¯nements incompletely. The

methods can manage ontologies represented in more expressive languages than ALC

Fig. 3. Portion of an induced TRT modelling user preferences within the Linked User Feedback (LUF)

dataset.
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but reuse the concepts therein as atoms and building new ones exclusively thorough

ALC concept constructors. The problem of the dimensions of the resulting trees

suggest the adoption of pruning strategies after the induction phase or interleaving

with it which could result in more compact and better predicting trees, even in the

presence of large number of training instances. Better indices for the standard devi-

ations shall be explored, especially to better take into account the concept simplicity

or the uncertainty related to the unlabeled individuals (and missing values).

Possible applications may include ranking queried resources and the enrichment of

an ontology with inductively annotated assertions for roles ranging on concrete

domains (numeric datatypes). Finally, the presented trees may be the basis for

alternative hierarchical clustering algorithms where clusters would be formed

grouping individuals on the grounds of the invented subconcept instead of their

similarity, as this may be hardly de¯ned with such complex representations.
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