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ABSTRACT
Knowledge available through Semantic Web standards can be miss-
ing, generally because of the adoption of the Open World Assump-
tion. We present a Statistical Relational Learning system for learn-
ing terminological naïve Bayesian classifiers, which estimate the
probability that an individual belongs to a target concept given its
membership to a set of Description Logic concepts. During the
learning process, we consistently handle the lack of knowledge that
may be introduced by the adoption of the Open World Assumption,
depending on the varying nature of the missing knowledge itself.

1. INTRODUCTION
Real-world knowledge generally involves some degrees of un-

certainty and imprecision; for this reason, on the Semantic Web
(SW) [1] difficulties arise when trying to model real-world domains
using purely logical formalisms. The World Wide Web Consortium
(W3C), recognising the need of soundly represent such knowledge,
in 2007 created the Uncertainty Reasoning for the World Wide
Web Incubator Group 1 (URW3-XG), with the aim of identifying
the requirements for reasoning with and representing the uncertain
knowledge in Web-based information. A wide range of approaches
to represent and infer with knowledge enriched with probabilistic
information has been proposed, ranging from extensions of exist-
ing knowledge representation standards to probabilistic enrichment
of Description Logics or logic programming formalisms.

Motivation
The main problem of applying these approaches in real settings is
given by the fact that they almost always assume the availability of
probabilistic information. However, except of seldom cases, this
information would be hardly known in advance. Having a method
that, exploiting available knowledge, (such as an already designed
and populated ontology) is able to capture the necessary logic and
probabilistic structure, would be of great benefit.

Also, Open World Assumption (OWA) is often employed when
reasoning through SW knowledge bases (e.g. when OWL is con-

1http://www.w3.org/2005/Incubator/urw3/
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sidered as a syntactic variant of some Description Logic): under
OWA, a statement is true or false only if its truth value can be for-
mally derived. As a consequence, there can be some cases (e.g. de-
termining if an individual is a member of a given concept) for which
the truth value cannot be determined (it cannot be derived neither
that the individual is instance of the considered concept nor that the
individual is instance of the negated concept). This is opposed by
the commonly employed Closed World Assumption (CWA), where
every statement that cannot be proved to be true, is assumed to be
false. In this paper, we face the problem of finding a set of logic fea-
tures (in the form of Description Logic concepts) that, used within
a probabilistic model, can be used to estimate the probability of a
previously unknown concept membership between a generic indi-
vidual and a target concept. For such reason, our method has to
handle the case in which the membership relation between such in-
dividual and logic features cannot be inferred, consistently with the
potential information contained in this lack of knowledge.

Related Work
Within the SW, Machine Learning (ML) is going to cover a rele-
vant role in the analysis of distributed data sources described using
SW standards [22], with the aim of discovering new and refining
existing knowledge. A collection of ML approaches oriented to
SW have already been proposed in literature, ranging from propo-
sitional and single-relational (e.g. SPARQL-ML [13], or based on
low-rank matrix approximation techniques such as in [22, 21]) to
multi-relational (e.g. distance-based [5, 10] or kernel-based [9, 2]).

In the class of multi-relational learning methods, Statistical Re-
lational Learning [12] (SRL) ones seem particularly appealing, be-
ing designed to learn in domains with both a complex relational
and a rich probabilistic structure; the URW3-XG provided in [15]
a large group of situations in which knowledge on the SW needs
to represent uncertainty. There have already been some propos-
als regarding the adaptation and application of SRL systems to the
SW, e.g. [7] proposes to employ Markov Logic Networks [19]
(MLN) for first-order probabilistic inference and learning within
the SW, and [17] proposes to learn first-order probabilistic theories
in a probabilistic extension of the ALC Description Logic named
CRALC. However, ML techniques proposed so far for the SW do
not explicitly consider the nature of the missing knowledge during
learning – e.g. matrix completion methods in [21] inherently as-
sume data is Missing At Random, CRALC learning methods tend
to learn theories sensitive to a specific ignorance model, and pro-
posed MLN learning methods resort to Closed World Assumption
(or the Missing At Random assumption) during learning.

Learning from incomplete knowledge bases by adopting meth-
ods not coherent with the nature of the missing knowledge itself
(e.g. expecting the value of a random variable being missing to



be non-informative on the actual value of such variable, when it
is) can lead to misleading results with respect to the real model fol-
lowed by the data [6]. In the rest of this paper, we will first describe
Bayesian Networks (representation, inference and learning) and a
proposed extension, called Robust Bayesian Estimator, making use
of probability intervals; then we will describe our probabilistic-
logic model, terminological Bayesian classifiers, and the problem
of learning them from a set of training individuals and a Descrip-
tion Logic knowledge base. Also, we will describe our learning
algorithm, and the adaptations to learn under different assumptions
on the ignorance model. In the final part, we will give experimental
evidence on the effectiveness of our method.

2. BAYESIAN NETWORKS AND ROBUST
BAYESIAN ESTIMATION

Graphical models [14] (GMs) are a popular framework to com-
pactly describe the joint probability distribution for a set of random
variables, by representing the underlying structure through a series
of modular factors. Depending on the underlying semantics, GMs
can be grouped into two main classes: directed graphical models,
which found on directed graphs, and undirected graphical models,
founding on undirected graphs.

A Bayesian network (BN) is a directed GM which represents the
conditional dependencies in a set of random variables by using a
directed acyclic graph (DAG) G augmented with a set of condi-
tional probability distributions θG (also referred to as parameters)
associated with G’s vertices. In such graph, each vertex corre-
sponds to a random variable Xi and each edge indicates a direct
influence relation between the two random variables. A BN stip-
ulates a set of conditional independence assumptions over its set
of random variables: each vertex Xi in the DAG is conditionally
independent of any subset S ⊆ Nd(Xi) of vertices that are not
descendants of Xi given a joint state of its parents, or formally:
∀Xi : Pr(Xi | S, parents(Xi)) = Pr(Xi | parents(Xi)),
where the function parents(Xi) returns the parent vertices of Xi
in the DAG representing the BN. The conditional independence
assumption allows to represent the joint probability distribution
Pr(X1, . . . , Xn) defined by a Bayesian network over a set of ran-
dom variables {X1, . . . , Xn} as a production of the individual prob-
ability distributions, conditional on their parent variables:

Pr(X1, . . . , Xn) =

n∏
i=1

Pr(Xi | parents(Xi)).

As a result, it is possible to define Pr(X1, . . . , Xn) by only spec-
ifying, for each vertex Xi in the graph, the conditional probability
distribution Pr(Xi | parents(Xi)).

Given a BN specifying a joint probability distribution over a set
of variables, it is possible to evaluate inference queries by marginal-
ization, like calculating the posterior probability distribution for a
set of query variables given some observed event (i.e. assignment
of values to the set of evidence variables). Exact inference for gen-
eral BNs is an NP-hard problem, but algorithms exist to efficiently
infer in restricted classes of networks, such as variable elimination,
which has linear complexity in the number of vertices if the BN
is a singly connected network [14]. Approximate inference meth-
ods also exist in literature, such as Monte Carlo algorithms, belief
propagation or variational methods [14].

The compact parametrization in graphical models allows for ef-
fective learning, both model selection (structural learning) and pa-
rameter estimation. In the case of BNs, however, finding a model
which is optimal with respect to a given scoring criterion (which
measures how well the model fits observed data) may not be triv-

ial: the number of possible structures for a BN is super-exponential
in the size of its vertices, making it generally impractical to per-
form an exhaustive search through the space of its possible models.
For such reason, in our approach, we tried to find an acceptable
trade-off between efficiency and expressiveness, so to make our
method suitable for a context like SW: we decided to focus on a
particular subclass of Bayesian networks, i.e. naïve Bayesian net-
works, modelling the dependencies between a set of random vari-
ables X = {X1, . . . , Xn}, also called features, and a random vari-
able C, also called class, so that each pair of features are indepen-
dent of each other given the class, i.e. ∀Xi, Xj ∈ X : i 6= j ⇒
(Xi ⊥⊥ Xj |C). This kind of models is especially interesting since
they proved to be effective also in contexts in which the underly-
ing independence assumptions are violated [8], even outperforming
more current approaches [3]. It is relevant to note that BNs can be
used as classifiers, by assigning each new, unclassified instance to
the class C maximizing the probability value Pr(C | e), where e
indicates the evidence available about the instance and Pr the prob-
ability distribution represented by the BN.

However, defining a BN requires a number of precise probabil-
ity assessments which, as we will see, will not be always possible
to obtain. A generalisation of naïve Bayesian networks to proba-
bility intervals is the robust Bayesian estimator [18] (RBE): each
conditional probability in the network is a probability interval char-
acterised by its lower and upper bounds, defined respectively as
Pr(A) = minPr∈P Pr(A) and Pr(A) = maxPr∈P Pr(A), where
P is a convex set of probability distributions. An approach very
similar to RBE is presented in [4] and proposes using Credal net-
works (which are structurally similar to a BN, but where the condi-
tional probability densities belong to convex sets of mass functions)
to represent uncertainty about network parameters.

A problem with this class of approaches arises when using such
model for classification – in the case of binary classification with
classes C1 and C2, given evidence e for a new, unclassified in-
stance, two posterior intervals are obtained, i.e. P(C1 | e) and
P(C2 | e). If such intervals do not overlap, the stochastic domi-
nance criterion can be employed, which assigns a new unclassified
instance to class C1 iff P(C1 | e) > P(C2 | e); otherwise, [18]
proposes using a weaker criterion, called weak dominance crite-
rion, which is based on representing each probability interval into
a single probability value represented by its middle point.

3. TERMINOLOGICAL NAÏVE BAYESIAN
CLASSIFIERS

The learning problem we intend to focus on consists in, given a
set of training individuals, learning a terminological naïve Bayesian
classifier NK; this is defined as a naïve BN modelling the depen-
dency relations between a set of Description Logic (DL) concepts
(also referred to as feature concepts) and a target concept C. Train-
ing individuals are distinguished in positive, negative and neutral,
belonging respectively to the target concept C, ¬C and whose
membership of C is unknown. A terminological Bayesian clas-
sifier can be defined as follows:

DEFINITION 1. (Terminological Bayesian Classifier) A termi-
nological Bayesian classifier NK, with respect to a DL KB K, is
defined as a pair 〈G,ΘG〉, where:

• G = 〈V, E〉 is a directed acyclic graph, in which:

– V = {F1, . . . , Fn, C} is a set of vertices, each V ∈
V representing a random variable associated to a DL
concept defined over K; Fi’s are associated to feature
concepts, and C to the target (class) concept;



– E ⊆ V ×V is a set of edges, modelling the dependence
relations between the elements of V .

• ΘG is a set of conditional probability distributions (CPD),
one for each V ∈ V , representing the conditional probabil-
ity distribution of the feature concept given the state of its
parents in the graph.

Given a generic individual a ∈ NI , each variable V ∈ V in the
network has value True (resp. False) if K |= V (a) (resp. K |=
¬V (a)) 2, otherwise (i.e. K 6|= C(a) ∧ K 6|= ¬C(a)) its value is
considered as not observable. If the concept-membership relation
between a and C is not known, its probability can be estimated
using BN inference algorithms.

In the case of terminological naïve Bayesian Classifiers, E =
{〈C,Fi〉 | i ∈ {1, . . . , n}}, i.e. each feature concept is indepen-
dent on other feature concepts, given the value of the target concept.

EXAMPLE 1. (Example of Terminological Naïve Bayesian Clas-
sifier) Given a set of DL feature concepts F = {Fe := Female,
HC := ∃hasChild.Person} 3 and a target concept Father, a
terminological naïve Bayesian classifier expressing the target con-
cept in terms of the feature concepts is the following:

Pr(Fe|Fa)
Pr(Fe|¬Fa)

Pr(Fa)

Pr(HC|Fa)
Pr(HC|¬Fa)

Fa := Father

Fe := Female

HC := ∃hasChild.Person

Let K be a DL KB and a a generic individual so that K |=
HC(a) and the membership of a to the concept Female is not
known, i.e. K 6|= Fe(a) ∧ K 6|= ¬Fe(a). It is possible to infer,
through the given network, the probability that the individual a is
a member of the target concept Fa:

Pr(Fa(a)) =
Pr(Fa) Pr(HC | Fa)∑

Fa′∈{Fa,¬Fa}
Pr(Fa′) Pr(HC | Fa′) ;

In the following we define the problem of learning a termino-
logical Bayesian classifier NK given a DL KB K and the training
individuals IndC(A):

DEFINITION 2. (Terminological Bayesian Classifier Learning
Problem) Our terminological naïve Bayesian classifier learning
problem consists in finding a networkN ∗K that maximizes the qual-
ity of the network with respect to the training instances and a spe-
cific scoring function; formally:

Given the following:

• a target concept C;

• a DL KB K = 〈T ,A〉, so that:

– ∀a ∈ Ind+
C(A) : K |= C(a),

– ∀a ∈ Ind−C(A) : K |= ¬C(a),
– ∀a ∈ Ind0

C(A) : K 6|= C(a) ∧ K 6|= ¬C(a);

• a scoring function specifying a measure of the quality of
an induced terminological Bayesian classifierNK w.r.t.
the samples in IndC(A) =

⋃
v∈{+,−,0} Ind

v
C(A);

2Each node is named after its associated concept for brevity.
3Aliases for DL concepts are used for brevity.

Find a network N ∗K maximizing the score function with respect to
the samples: N ∗K ← arg max

NK
score(NK, IndC(A))).

The search space to find the optimal networkN ∗K may be too large
to explore exhaustively; therefore our learning algorithm, outlined
in Alg. 1, works by greedily searching the space of features (i.e.
DL complex concepts) for the ones that maximize the score of the
induced network, with respect to a scoring function, and incremen-
tally building the resulting network. While the features are added
one by one, the search in the space of DL complex concepts is
made through a beam search, starting from a concept Start and
gradually specializing candidate feature concepts, by employing a
DL refinement operator [16]. For each new complex concept be-
ing evaluated, the algorithm creates a new set of concepts/variables
V ′ and finds the optimal structure, under a given set of constraints
(which, in the case of terminological naïve Bayesian classifiers, is
already fixed) and parameters (which may vary depending on the
assumptions on the nature of the ignorance model). Then, the new
network is scored, with respect to a given scoring criterion.

Algorithm 1 Algorithm for Learning Terminological Bayesian
Classifiers
function learn(K, IndC(A))

1: N ∗K = 〈G,ΘG〉,G = 〈V ← {C}, E ← ∅〉;NK ← ∅;
2: repeat
3: NK ← N ∗K;
4: Network = 〈c′,N ′K, s′〉 ← extend(NK, IndC(A));
5: N ∗K ← N ′K;
6: until stopping criterion on Network;
7: return NK;

function extend(NK, IndC(A))

1: Best← Temp← ∅;Beam← {Start};
2: repeat
3: for c ∈ Beam do
4: for c′ ∈ {c′ ∈ ρcl↓ (c) | |c′| ≤ min(|c| + d,maxLen)}

do
5: V ′ ← V ∪ {c′};
6: N ′K ← optimalNetwork(V ′, IndC(A));
7: s′ ← score(N ′K, IndC(A));
8: Temp← Temp ∪ {〈c′,N ′K, s′〉};
9: end for

10: end for
11: Beam← selectFrom(Temp,w);Temp← ∅;
12: Best← arg max〈c′,N ′K,s′〉∈Beam∪{Best} s

′;
13: until stopping criterion on Best, Beam;
14: return Best;

In our algorithm, the extend function greedily searches for a
new (complex) feature concept which can improve the whole net-
work’s score (determined by a scoring function score). The search
through the space of concept definitions is performed through a
beam search, using the ρcl↓ refinement operator [16] (ρcl↓ (C) returns
a set of refinementsD ofC so thatD < C, which we consider only
up to a given concept length n). The functions optimalNetwork
and score are used, respectively, to find the optimal Bayesian net-
work structure between the nodes in the network (eventually under
a set of constraints, like in the naïve Bayes case or some of its ex-
tensions) and for scoring a classifier (to compare its effectiveness
with others). However, those two functions are sensitive to the as-
sumptions made about the ignorance model.



Different Assumptions on the Ignorance Model
LetK = 〈T ,A〉 be a DL KB; under OWA, it is not always possible
to know if a generic DL assertion α is or is not entailed by K (i.e.
there may be cases in which K 6|= α ∧ K 6|= ¬α). We characterize
such a lack of knowledge about concept-memberships through the
probability distribution of the ignorance model [20]. Given a con-
cept D, a generic individual a, an ignorance model IM and a DL
KB K∗ such that we can extract, by using IM, K as a fragment of
K∗, i.e. ∀α : K |= α⇒ K∗ |= α ∧ K∗ |= α 6⇒ K |= α.

Given a probabilistic model that calculates the probability that
the concept-membership betweenD and a is unknown inK, we can
say that the ignorance model underlying the concept-membership
between a and D in K (given K∗) is one of the following:

• MCAR (Missing Completely at Random) – when the prob-
ability for such concept-membership to be missing is inde-
pendent on the knowledge on a available in K∗: Pr(K 6|=
D(a) ∧ K 6|= ¬D(a) | K∗) = Pr(K 6|= D(a) ∧ K 6|=
¬D(a)).

• MAR (Missing At Random) – when the probability for such
concept-membership to be missing depends on the knowl-
edge on a available in K: Pr(K 6|= D(a) ∧ K 6|= ¬D(a) |
K∗) = Pr(K 6|= D(a) ∧ K 6|= ¬D(a) | K).

• NMAR (Not Missing At Random, also referred to as IM, In-
formatively Missing) – when the probability for such concept-
membership to be missing depends on the knowledge on a
available in K∗: Pr(K 6|= D(a) ∧ K 6|= ¬D(a) | K∗) 6=
Pr(K 6|= D(a) ∧ K 6|= ¬D(a) | K).

When the assumed ignorance model is MCAR, Available Case
Analysis [14] can be used, which builds an unbiased estimator of
the network parameters using only available knowledge. A scoring
function that can be used for this case is network’s class-conditional
log-likelihood on positive and negative training individuals, defined
as 4:

L(NK | IndC(A))=
∑

a∈Ind+
C

(A)

log Pr(C(a) | NK)

+
∑

a∈Ind−
C

(A)

log Pr(¬C(a) | NK); (1)

A problem with using simple log-likelihood for finding optimal
feature set and structure, is that it grows monotonically with the
number of edges and features. To avoid overfitting, it is possible to
resort to log-likelihood-based scoring criteria, such as the Bayesian
Information Criterion (BIC) or the Akaike Information Criterion
(AIC) [14], which subtract a penalty score to the log-likelihood
proportional to the complexity of the model (which, in case of BIC
and AIC, are respectively (|ΘG |/2) logn and |ΘG |, where |ΘG | is
the number of independent network parameters and n is the num-
ber of data points). Under the naïve Bayes assumption, there is no
need to perform a search for finding the optimal network, since the
structure is already fixed (each node except the target concept node
has only one parent, i.e. the target concept node); otherwise, find-
ing a network structure which is optimal under some criterion (e.g.
the BIC score [14]) may require an exhaustive search in the space
of possible structures. However, for an extension of naïve Bayesian
networks (which allows for a tree structure among feature nodes), it
is possible to efficiently compute the optimal structure employing
the method in [11], making it appealing for real-life applications
requiring efficiency and ability to scale.
4Log-likelihoods here are calculated ignoring available knowledge
about the membership between individuals and target concept.

In the MAR case, a possible solution for learning models ac-
counting for missing knowledge is to use the Expectation - Maxi-
mization (EM) algorithm, MCMC sampling or gradient ascent [14].
We use EM to learn terminological naïve Bayesian classifiers from
MAR data. In our approach, outlined in Alg. 2, we first heuristi-
cally estimate network’s parameters by only using available data;
then, we consider individuals whose membership to a generic con-
cept D is not known as several fractional individuals belonging,
with different weights (corresponding to the posterior probability of
their class membership), to both the components D and ¬D; such
fractional individuals are used to recalculate network parameters
(obtaining the so-called expected counts and the process is repeated
until convergence (e.g. when the improvement in log-likelihood is
lower than a certain threshold).

Algorithm 2 Outline for our implementation of the EM algorithm
for parameter learning in a terminological Bayesian classifier.

function EM(N 0
K, IndC(A))

1: N 0
K = 〈G,Θ0

G〉,G = 〈V, E〉; t← 0;
2: repeat
3: {n̄(xi, πxi)} ← ExpCounts(NK, IndC(A));
4: for Xi ∈ V do
5: for 〈xi, πxi〉 ∈ vals(Xi, parents(Xi)) do
6: θt+1

G (xi, πxi)←
n̄(xi,πxi

)∑
x′
i
∈vals(Xi)

n̄(x′i,πxi
)
;

7: end for
8: end for
9: t← t+ 1;N t

K = 〈G,Θt
G〉;

10: until L(N t
K | IndC(A))− L(N t−1

K | IndC(A)) ≤ τ ;
11: return N t

K;

functionExpCounts(NK, IndC(A))

1: NK = 〈G,ΘG〉,G = 〈V, E〉;
2: for Xi ∈ V do
3: for 〈xi, πxi〉 ∈ vals(Xi, parents(Xi)) do
4: n̄(xi, πxi)← 0;
5: end for
6: end for
7: for a ∈ IndC(A) do
8: for Xi ∈ V do
9: for 〈xi, πxi〉 ∈ vals(Xi, parents(Xi)) do

10: n̄(xi, πxi)← n̄(xi, πxi) + Pr(xi, πxi | NK);
11: end for
12: end for
13: end for
14: return {n̄(xi, πxi)};

At each iteration, the EM algorithm applies the following two
steps:

• Expectation step – using available data and the current net-
work parameters, calculate a distribution over possible com-
pletions for the missing knowledge;

• Maximization step – considering each possible completion
as a fully available data case (weighted by its probability),
calculate next parameters using frequency counting.

About finding optimal structures for networks with less restric-
tions on their structure (such as tree-augmented naïve BNs or un-
restricted BNs) from MAR data, it is possible to employ the Struc-
tural EM (SEM) algorithm [14]. In SEM, the maximization step is
performed both in the space of structures G and in the space of pa-
rameters ΘG , by first searching a better structure and then the best



parameters associated to the given structure; it can be proven that,
if the search procedure finds a structure that is better than the one
used in the previous iteration with respect to e.g. the BIC score,
then the SEM algorithm will monotonically improve the score.

When knowledge is NMAR, it is generally possible to extend
the probabilistic model to produce one where the MAR assump-
tion holds; e.g. if a feature concept Fi follows a NMAR igno-
rance model, with respect to a generic individual a and a DL KBK,
we can consider its observability as an additional indicator variable
(e.g. Yi = 0 iff K 6|= Fi(a) ∧ K 6|= ¬Fi(a), Yi = 1 otherwise)
in our probabilistic model, so that Fi’s ignorance model satisfies
the MAR assumption (since the missingness of Fi depends of the
always observable indicator variable). However, in this way, the
inferred classifier will be dependent on the ignorance model in the
training set, and changes in the missingness pattern may impact on
the classifier’s effectiveness.

An alternate solution is Robust Bayesian Estimation [18] (RBE),
which allows to learn (interval-valued) conditional probability dis-
tributions without making any sort of assumption about the nature
of the missing data. RBE allows to infer posterior probability in-
tervals instead of single posterior probability values, obtained by
taking in account all the possible fillings of the missing knowledge.
In [18], a method for efficiently calculate interval network param-
eters and posterior intervals 5 is provided. To score each induced
network, we empirically chose to calculate posterior intervals, get
their central point and then use them as probability values to cal-
culate the log-likelihood as in Equation 1. Another evaluation ap-
proach has been proposed in [23] to compare credal classifiers, and
proposes using a scoring criterion based on discounted accuracy
and a function indicating risk-aversion.

EXAMPLE 2. (Example of Terminological Naïve Bayesian Clas-
sifier using Robust Bayesian Estimation) Consider again the termi-
nological naïve Bayesian classifier in Example 1: when learning
in presence of NMAR knowledge, it can be extended with interval-
valued network parameters for inferring posterior probability in-
tervals instead of single posterior probability values through Ro-
bust Bayesian Estimation. In such class of networks, conditional
probability tables associated to each node contain convex intervals
of probability values instead of single probability values, each de-
fined by its upper and lower bound. 6

[Pr(Fe|Fa),Pr(Fe|Fa)]

[Pr(Fe|¬Fa),Pr(Fe|¬Fa)]
[Pr(Fa),Pr(Fa)]

[Pr(HC|Fa),Pr(HC|Fa)]

[Pr(HC|¬Fa),Pr(HC|¬Fa)]

Fa

Fe

HC

Interval-valued network parameters can be calculated efficiently [18].
E.g. the parameters associated to the feature concept HC can be
calculated as follows:

n(HC | Fa)= n(? | Fa) + n(HC |?) + n(? |?);

n(HC | Fa)= n(? | Fa) + n(¬HC |?) + n(? |?);

Pr(HC | Fa)= n(HC|Fa)+n(HC|Fa)
n(Fa)+n(HC|Fa)

;

Pr(HC | Fa)= n(HC|Fa)
n(Fa)+n(HC|Fa)

;

5A posterior interval estimate represents the range of probability
values associated to the membership of an instance to a class.
6In the following part, feature concepts will be aliased with the
labels as in Example 1 for brevity.

where n(? | Fa) = |{a ∈ Ind+
Fa(A) | K 6|= HC(a) ∧ K 6|=

¬HC(a)}|, n(HC |?) = |{a ∈ Ind0
Fa(A) | K |= HC(a)}| and

n(? |?) = |{a ∈ Ind0
Fa(A) | K 6|= HC(a) ∧ K 6|= ¬HC(a)}|.

Inference can be performed as follows – given a generic individ-
ual a such that K |= HC(a), the probability that a is a mem-
ber of concept Fa belongs to the posterior probability interval
[Pr(Fa | HC),Pr(Fa | HC)], where:

Pr(Fa | HC)= Pr(HC|Fa)Pr(Fa)

Pr(HC|Fa)Pr(Fa)+Pr(HC|¬Fa)Pr(¬Fa)
;

Pr(Fa | HC)= Pr(HC|Fa)Pr(Fa)

Pr(HC|Fa)Pr(Fa)+Pr(HC|¬Fa)Pr(¬Fa)
;

4. EXPERIMENTS
In this section we aim at empirically assess the impact of differ-

ent missing knowledge handling methods when learning termino-
logical naïve Bayesian classifiers from real world ontologies.

Ontology DL Expressivity #Axioms #Individuals
MDM0.73 ALCHOF(D) 1098 112

LEO ALCHIF(D) 430 61
FAMILY-TREE SROIF(D) 2059 368

WINE SHOIN (D) 747 161

Table 1: Ontologies considered in the experiments.

Starting from a set of real ontologies 7 (outlined in table 1), we
generated a set of 20 random query concepts for each ontology 8,
so that the number of individuals belonging to the target query con-
cept C (resp. ¬C) was at least of 10 elements and the number
of individuals in C and ¬C was in the same order of magnitude.
A standard reasoner 9 was employed to decide on the theoretical
class-membership (and non-membership) of the individuals with
respect to the query concepts. In experiments, we re-learned such
concept queries as terminological naïve Bayesian classifiers, using
individuals retrieved by each query (resp. its complement) as posi-
tive (resp. negative) examples. The evaluated learning approaches
were Available Case Analysis (ACA), EM algorithm (EM), Ro-
bust Bayesian Estimation (ROBUST) and two considering both ob-
servable and missing observations (IM3 and IM2). The last two
approaches build networks which are dependant on the ignorance
model: IM3 (for Informatively Missing) makes use of three-valued
feature variables take a value in {True, False, Unknown} when
the membership to the associated feature concept is respectively
true, false or not known; and IM2, in which two values feature vari-
ables take a value in {True,Other}, when the membership to the
associated feature concept is respectively true or one of false or
not known. During experiments, refinements were only allowed
to contain conjunctions/disjunctions of concepts, complements and
existential restrictions, and refinements started from concept>. To
avoid overfitting, the construction of each new network was driven
by the BIC score. In experiments, each of the 20 generated query
concepts generated, was used to obtain a pair of sets composed by
positive and negative examples, selecting the individuals in the on-
tology belonging respectively to the query concept and its comple-
ment. On each of these pair of positive/negative examples, k-fold
cross validation (with k = 10) was used to estimate k accuracy val-
ues (for ROBUST, discounted accuracy was used, to also consider
7Found on the TONES Ontology Repository – http://owl.cs.
manchester.ac.uk/repository/
8Using the query concept generation method available at
http://lacam.di.uniba.it:8000/~nico/research/
ontologymining.html
9Pellet v2.2.2 – http://clarkparsia.com/pellet/



the cases in which an unique class label could not be identified).
Results are summarised in Table 2.

ACA EM IM3 IM2 ROBUST
LEO .97± .08 .97± .08 .94± .12 .97± .08 .93± .14

MDM .96± .07 .96± .07 .95± .07 .97± .05 .9± .1
WINE .91± .12 .91± .12 .92± .13 .94± .11 .88± .12
F-T 1± 0 1± 0 1± 0 1± 0 1± 0

Table 2: Cross-validated accuracy results on the generated data
sets – for each ontology in Table 1, 20 query concepts were gen-
erated, and each was used to obtain a sample of positive/nega-
tive individuals, which were used to evaluate the methods using
k-fold cross validation (with k = 10).

Both the parameters depth and maxLength, indicating respec-
tively the maximum depth of each refinement step and the max-
imum length of a feature concept, were both set to 3 (2 in the
case of the more complex ontology FAMILY-TREE). In two cases,
IM2 achieved better results than other methods; this is particularly
true in WINE, where the 20 accuracy values obtained by IM2 were
greater than those obtained by ACA and EM (wit p < 0.05 mea-
sured with a paired Student’s t-test). IM3 was modelling both ob-
servability and ignorance too, but the higher number of parame-
ters (feature variables were three-valued) caused it to have a higher
number of parameters, which is penalized by the BIC score. In the
FAMILY-TREE ontology, all methods achieved nearly perfect accu-
racy; the reason is that generated query concepts, in this case, were
summarised by single, shorter concepts that the system was able to
learn as feature concepts (e.g. GrandparentOfRobert, ¬Man,
or Woman 10). In LEO, ACA, EM and IM2 achieved nearly the
same results suggesting that, in this particular case, the missing-
ness of the discriminant features could be ignored. In general, RO-
BUST was often overcautious during classification (thanks to its
ability to find the cases in which changes in the missingness pat-
terns can cause a different classification), which caused it to have a
lower, discounted accuracy.

5. CONCLUSIONS AND FUTURE WORK
We presented a SRL system designed for learning terminologi-

cal naïve Bayesian classifiers, which estimates the probability that
a generic individual belongs to a certain target concept, given its
membership relation to an induced set of complex Description Logic
concepts. We gave a characterisation of the lack of knowledge that
may be introduced by the OWA depending on the underlying igno-
rance model, and handled such missing knowledge, during learn-
ing, under different assumptions on the nature of missing knowl-
edge. In our future work, we aim at estimating computationally
the ignorance model followed by each feature concept, at develop-
ing new methods to exploit the potential information contained in
missigness as well as new scoring and searching techniques, and
evaluate our methods more extensively on real world ontologies.
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