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ABSTRACT
We focus on the problem of predicting missing links in large
Knowledge Graphs (KGs), so to discover new facts. Over
the last years, latent factor models for link prediction have
been receiving an increasing interest: they achieve state-
of-the-art accuracy in link prediction tasks, while scaling
to very large KGs. However, KGs are often endowed with
additional schema knowledge, describing entity classes, their
sub-class relationships, and the domain and range of each
predicate: the schema is actually not used by latent factor
models proposed in the literature. In this work, we propose an
unified method for leveraging additional schema knowledge in
latent factor models, with the aim of learning more accurate
link prediction models. Our experimental evaluations show
the effectiveness of the proposed method on several KGs.

CCS Concepts
•Computing methodologies→ Semantic networks; Rea-
soning about belief and knowledge;
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1. INTRODUCTION
Knowledge Graphs (KGs) are graph-structured knowledge
bases, where factual knowledge is represented in the form of
relationships between entities: they are a powerful instrument
for search, analytics, recommendations, and data integration.
Several KGs are publicly available through the Linked Open
Data (LOD) cloud, a collection of interlinked KGs such
as Freebase [2], DBpedia [1] and YAGO [10]. As of April
2014, the LOD cloud is composed by 1,091 interlinked KGs,
globally describing more than 8× 106 entities, and 188× 106
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relationships holding between them 1. However, KGs are
often largely incomplete. For instance consider Freebase 2, a
core element in the Google Knowledge Vault project [6]: 71%
of the persons described in Freebase have no known place
of birth, 75% of them have no known nationality, while the
coverage for less frequent predicates can be even lower [6].

In this work, we focus on the problem of predicting missing
links in large KGs, so to discover new facts about a domain of
interest. In the literature, this problem is referred to as link
prediction, or knowledge base completion. For solving this
problem, over the last years, latent factor models have been
receiving an increasing interest [3]. In particular, the recently
proposed Translating Embeddings model [5] was shown to
achieve state-of-the-art link prediction results, while being
able to scale to very large and highly-relational KGs [3].

In KGs, facts are represented by 〈s, p, o〉 triples, where each
triple denotes a relationship of type p (predicate of the triple)
between the subject s and the object o. Latent factor mod-
els associate a prediction score to each triple, measured as
a function of the latent factors (also referred to as latent
features [11]) associated to the subject, the predicate and
the object of the triple. The latent factors of all entities
and predicates in the KG are learned jointly, by maximizing
the compatibility between the latent factors and the KG. As
a result, the learned latent factors retain global, structural
information about the KG [11]. However, real world KGs are
usually endowed with additional ontological schema knowl-
edge containing high level knowledge about the KG. Latent
factor models proposed in the literature are not designed
for leveraging the schema of a KG: how to correctly include
schema knowledge in such models is a largely unexplored
field. In this work, we propose a principled, unified method
for including schema knowledge in latent factor models, with
the aim of learning more accurate link prediction models.

This paper is structured as follows. In Sect. 2, we introduce
the basic concepts. In Sect. 3 we analyze several state-of-
the-art models, and discuss their limitations. In Sect. 4 we
propose a novel method for leveraging schema knowledge in
latent factor models for link prediction. In Sect. 5 we extend
the learning process so to learn a set of new schema-related
parameters. In Sect. 6 we experimental show the effectiveness
of the proposed method on several datasets. In Sect. 7 we
summarize this work and discuss future research directions.

1State of the LOD Cloud 2014: http://lod-cloud.net/
2Available at https://developers.google.com/freebase/data
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2. BASICS
RDF Graphs - In this work, we assume the KG is rep-
resented using the W3C Resource Description Framework
(RDF) 3, a recommended standard for expressing informa-
tion about resources. Resources can be anything, including
documents, people, physical objects, and abstract concepts.

An RDF knowledge base, also called RDF graph, is a set of
RDF triples in the form 〈s, p, o〉, where s, p and o denote the
subject, the predicate and the object of the triple, respectively.
The subject s and the object o denote resources, or entities,
and p denotes a predicate, or relation type. Each triple
〈s, p, o〉 describes a statement, which can be interpreted as:
A relationship of type p holds between entities s and o.

Example 2.1 (Shakespeare). Consider the following
statement: William Shakespeare, author of the tragedy Ham-
let and the Othello, was influenced by Geoffrey Chaucer. It
can be expressed by the following RDF triples:

〈Shakespeare, authorOf, Hamlet〉
〈Hamlet, genre, Tragedy〉

〈Shakespeare, authorOf, Othello〉
〈Shakespeare, influencedBy, Chaucer〉

An RDF graph intrinsically represents a labeled directed
multigraph, where each entity is a vertex, and each RDF
triple is represented by an edge whose label is a predicate
and emanating from its subject vertex to its object vertex.
In RDF, the Open World Assumption holds: a missing triple
does not mean that the corresponding statement is false, but
rather that its truth value is missing, meaning that it cannot
be observed in the KG.

In the following, given an RDF graph G, we denote by
EG = {s | ∃〈s, p, o〉 ∈ G} ∪ {o | ∃〈s, p, o〉 ∈ G} the set of all
entities occurring in G, and by RG = {p | ∃〈s, p, o〉 ∈ G}
the set of all predicates occurring in G. For instance, in the
case of the RDF graph shown in Ex. 2.1, we have that EG =
{Shakespeare, Hamlet, Tragedy, Othello, Chaucer}, and
RG = {authorOf, genre, influencedBy}. We will denote by
SG = EG ×RG × EG the set of possible triples that can be
generated using entities and predicates in G. We refer to all
triples in G as visible triples, and to all triples in SG \G as
unobserved triples.

Due to the Open World Assumption, unobserved triples
might encode true statements. For instance, consider the
triple 〈Othello, genre, Tragedy〉: although it is unobserved,
it represents the true statement Othello is a Tragedy. In this
work, we focus on identifying unobserved triples representing
true statements, so to provide a likely completion of the KG.

RDF Schema - RDF Schema (RDFS) 4extends the RDF
vocabulary by providing mechanisms for describing groups of
related entities and the relationships between these entities.

Let the prefixes rdf and rdfs represent the RDF and RDFS
namespaces, respectively. RDF provides a property between
resources, rdf:type, that relates a resource to the types that
the resource belongs to. RDFS extends the RDF vocabulary

3http://www.w3.org/TR/rdf11-concepts/
4http://www.w3.org/TR/rdf-schema/

by defining several built-in classes, such as the class of all
classes rdfs:Class, the class of all properties rdfs:Property,
and the class of all resources rdfs:Resources. RDFS also
defines several relationships between classes (such as the sub-
class relationship rdfs:subClassOf) and between properties
and classes (such as the domain relationship rdfs:domain,
and the and range relationship rdfs:range).

Example 2.2 (Shakespeare – cont.). The RDF graph
in Ex. 2.1 can be enriched with RDFS schema knowledge. For
instance, consider the following statement: William Shake-
speare is a person, and the authorship relation can only occur
between a person and a literary work. It can be expressed by
the following RDF triples, through the RDF(S) vocabularies:

〈Shakespeare, rdf:type, Person〉
〈authorOf, rdfs:domain, Person〉
〈authorOf, rdfs:range, LiteraryWork〉

The RDFS entailment regime 5 defines a set of logical entail-
ment rules which allow to deductively infer new and correct
RDF statements from a given RDF graph. For instance, the
following two RDFS entailment rules:

{〈p, rdfs:domain, c〉, 〈s, p, o〉} ⇒ 〈s, rdf:type, c〉,
{〈p, rdfs:range, c〉, 〈s, p, o〉} ⇒ 〈o, rdf:type, c〉,

can be interpreted as follows: If the predicate p has domain
(resp. range) c, and an entity occurs as a subject (resp.
object) of p, then such entity belongs to the class c.

Latent Factor Models - Latent factor models for link
prediction represent the confidence in each triple (fact) as a
function of a set of latent factors (also called latent features)
associated to the subject, predicate and object of the triple;
see [11] for a recent overview. The term latent refers to the
fact that such features are not directly observable in the KG,
but rather they are estimated from data. For example, a
possible explanation of the influence of William Shakespeare
and his plays in a large number of contemporary works of
art, such as writings and movies (observable evidence), is
that Shakespeare was a great writer (latent feature).

More specifically, a latent factor model associates a prediction
score θs,p,o = f(〈s, p, o〉; Θ) to each triple 〈s, p, o〉, where
f( · ; Θ) is a model-dependent scoring function, and Θ are
the model parameters. The score θs,p,o represents the model’s
confidence that the statement represented by 〈s, p, o〉 holds
true, while Θ represents the latent factors used by the model
for explaining the evidence [11]. In a link prediction setting,
given the model parameters Θ, the scoring function f( · ; Θ)
is used for ranking unobserved triples in SG \ G: those
with a higher prediction score have a higher probability
of representing a true statement, and are considered for a
completion of the KG G. The model parameters Θ can be
learned from data: this aspect is discussed in detail in Sect. 5.

In the following sections, we briefly survey the models pro-
posed in the literature: we analyze their limitations, and
propose a principled method for leveraging RDFS schema
knowledge in latent factor models, with the aim of learning
more accurate link prediction models.

5http://www.w3.org/TR/rdf11-mt/
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3. LATENT FACTOR MODELS FOR
LINK PREDICTION

Several latent factor models have been proposed in the liter-
ature for solving the link prediction problem. Some widely
cited models are RESCAL [12], the Semantic Matching Energy
model [4] and the Translating Embeddings model [5]. Such
models differ by the choice of the scoring function f( · ; Θ),
where Θ denotes the set of model parameters, and how such
parameters are learned from the knowledge graph.

A common characteristic of these models is that they asso-
ciate a unique latent factor ex ∈ Rk to each entity x ∈ EG
in the KG, where k ∈ N is a user-defined hyper-parameter.
Each vector ex ∈ Rk can be interpreted as a collection of
latent features describing the entity x [11]. Given a triple
〈s, p, o〉, its prediction score θs,p,o = f(〈s, p, o〉; Θ) is calcu-
lated as a function of the latent factors es and eo, respectively
associated to the subject s and the object o of the triple.

The Translating Embeddings model, also referred to as TransE,
proposed in [4] is particularly interesting: despite its simple
formulation, it represents the state-of-the-art in latent factor
models for link prediction in knowledge graphs in terms of
predictive accuracy. Furthermore, it overcomes many of the
limitations in terms of efficiency and scalability of related
models proposed in the literature, and it was shown to scale
to very large and highly-relational knowledge graphs [3].

The Translating Embeddings Model.

In TransE, each entity and predicate x ∈ EG ∪RG is mapped
to a unique, low-dimensional latent factor ex ∈ Rk, also
referred to as the embedding vector of x. Given a triple
〈s, p, o〉, the corresponding prediction score θs,p,o is given by:

θs,p,o = f(〈s, p, o〉; Θ) = −δ(es + ep, eo), (1)

where Θ = {ex ∈ Rk | x ∈ EG ∪ RG} is the set of model
parameters, corresponding to the set of all embedding vec-
tors, and es, ep, eo ∈ Rk are the embedding vectors asso-
ciated to the subject s, the predicate p, and the object o,
respectively. The function δ( · ) in Eq. 1 is a dissimilarity
function corresponding to either the L1 or the L2 distance,
i.e. δ(x,y) ∈ {‖x− y‖1, ‖x− y‖2}.

Let Ne = |EG| and Nr = |RG| denote the number of entities
and predicates in the KG. In TransE, the number of model
parameters is |Θ| = Nek+Nrk, a quantity that grows linearly
with Ne and Nr, and with the latent factor dimension k.
Furthermore, evaluating the scoring function in Eq. 1 and its
gradient w.r.t. the model parameters only requires simple,
element-wise vector operations. For such a reason, TransE
can scale to large and highly-relational KGs [4].

Despite its simplicity, TransE yields more accurate link pre-
diction results than more complex models in the literature,
such as RESCAL [3]. A possible explanation is that, in TransE,
a lower number of model parameters, together with a simple
linear interaction between the latent factors, lead to better
generalization properties [5].

The Scaling Embeddings Model.

In TransE, each prediction score θs,p,o = f(〈s, p, o〉; Θ) is

based on an additive interaction of the latent factors es and
ep associated to the subject and the predicate of the triple.
In a recent work [13], authors found that a multiplicative
interaction of the latent factors can be a better alternative,
as it scales each component in es with the strength of the
corresponding component in ep. For such a reason, during
experiments, we also consider the following TransE variants:

TransE+ : f(〈s, p, o〉; Θ) = −δ(es + ep,1, eo + ep,2),

ScalE : f(〈s, p, o〉; Θ) = −δ(es ◦ ep, eo),

ScalE+ : f(〈s, p, o〉; Θ) = −δ(es ◦ ep,1, eo ◦ ep,2),

where ◦ denotes the element-wise product, corresponding to
the vector scaling operation, and δ(x,y) is a dissimilarity
function corresponding either to the L1 or L2 distance (as in
the original TransE model), or to the negative inner product,
i.e. δ(x,y) ∈ {‖x− y‖1, ‖x− y‖2,−xTy}.

The model denoted by ScalE applies a scaling operation,
instead of a translation, to the latent factor es associated to
the subject of the triple s. TransE+ and ScalE+ increase the
expressiveness of TransE and ScalE by associating two latent
factors to each predicate, and translating (resp. scaling) the
latent factors associated to both the subject and the object.

However, despite their widespread use in link prediction
tasks [3], latent factor models proposed in literature are not
yet capable of leveraging the schema knowledge, encoded
in RDFS, available for many KGs. In the following section,
we address this problem by proposing an unified method for
including schema knowledge in latent factor models, with
the aim of learning more accurate link prediction models.

4. LEVERAGING SCHEMA KNOWLEDGE
The vast majority of KGs, including Freebase [2], DBpedia [1]
and YAGO [10], are endowed with additional RDFS schema
knowledge, which is not taken into account by latent factor
models proposed in the literature. In this section, we pro-
pose an unified method for leveraging schema knowledge in
latent factor models, with the aim of learning more accurate
prediction models. Consider the following example:

Example 4.1 (Shakespeare – cont.). The RDF(S)
graph in Ex. 2.2 can be further enriched with schema knowl-
edge representing the following statement: Othello is a literary
work, England is a location, and the domain of the genre
relation is literary works. The statement can be represented
by the following RDF triples:

〈Othello, rdf:type, LiteraryWork〉
〈England, rdf:type, Location〉
〈genre, rdfs:domain, LiteraryWork〉

Now, consider the problem of scoring two triples T1 (Othello
is a Tragedy) and T2 (England is a Tragedy), according to
the confidence that the corresponding statement holds true:

T1 : 〈Othello, genre, Tragedy〉
T2 : 〈England, genre, Tragedy〉

We can add either T1 or T2 to the KG, without causing any
inconsistency. However, adding T2 to the KG causes the
resource England to be additionally typed as a LiteraryWork,



Table 1: Statistics for the datasets used in link prediction experiments

Dataset Entities Predicates
Training
Triples

Validation
Triples

Test
Triples

Freebase (FB15k) 14,951 1,345 483,142 50,000 59,071
YAGO3 120,004 35 1,082,107 1,000 1,000

DBpedia 2014 (Music) 104,422 7 265,156 1,000 1,000

according to the RDFS entailment rules. This is still correct,
since RDFS does not allow expressing that two classes are
disjoint, but it may denote a potential modeling flaw [8].
For instance, in this particular case, England is meant as a
location, and clearly not as a literary work.

In a link prediction setting, we aim at predicting missing
facts (triples) in a knowledge graph. In this context, Othello
can be considered as more likely to appear as a literary work
of the Tragedy genre than England.

We propose a principled, unified method for leveraging RDFS
schema information in latent factor models. Specifically,
we introduce a set of predicate-specific parameters λ that
adaptively decrease the prediction score of triples if they imply,
according to the RDFS logical entailment rules, previously
unknown and possibly conflicting type information on the
subject or object of such triples. The proposed method allows
assigning lower prediction scores to unobserved triples that,
once added to the KG, introduce unlikely type information.
The introduced schema-related parameters λ can be learned
jointly with the model parameters Θ.

Formally, for each predicate p ∈ RG, let domainG(p) ⊆ EG
denote the set of entities typed as the domain of p. Similarly,
let rangeG(p) ⊆ EG denote the set of entities typed as the
range of p, according to RDFS entailment rules. We introduce
two penalty terms gG : RG×EG → {0, 1} and hG : RG×EG →
{0, 1}, defined as follows:

gG(p, s) =

{
1 if s 6∈ domainG(p),

0 otherwise.

hG(p, o) =

{
1 if o 6∈ rangeG(p),

0 otherwise.

(2)

Given the scoring function f( · ; Θ) associated to a given
latent factor model, we define the corresponding schema-
aware scoring function fS( · ; Θ,λ) as follows:

fS(〈s, p, o〉; Θ,λ) =f(〈s, p, o〉; Θ)

− λg
pgG(p, s)− λh

phG(p, o),
(3)

where λ = {λg
p, λ

h
p ∈ R+ | p ∈ RG} is a set of additional

schema-related parameters: in particular, λg
p and λh

p are
two new predicate-specific parameters, associated with the
predicate p ∈ RG, that control the weight of the penalty
terms gG and hG. The new schema-aware model relies on
|λ| = 2Nr additional schema-related parameters, a quantity
that scales linearly with the number of predicates in the KG.

The role of parameters λg
p and λh

p in weighting the penalty

terms is the following. Setting λg
p = 0 and λh

p = 0 corresponds
to not leveraging any additional schema knowledge, since it
follows that fS(〈s, p, o〉; Θ,λ) = f(〈s, p, o〉; Θ).

When λg
p > 0, we are associating a higher prediction score

to triples 〈s, p, o〉 where, given a predicate p (e.g. genre),
the subject s (e.g. Othello) is typed as the domain of p (e.g.
Literary Work). Similarly, when λh

p > 0, we are associating
a higher prediction score to triples where the object o (e.g.
Tragedy) is typed as the range of p (e.g. Literary Genre).

In Ex. 4.1, assume that the scoring function of a latent
factor model f( · ; Θ), for some reason (such as lack of sta-
tistical evidence) assigns the same prediction score to T1

and T2, i.e. f(T1; Θ) = f(T2; Θ). If λg
p > 0, we have that

fS(T1; Θ,λ) > fS(T2; Θ,λ), i.e. the schema-aware model con-
siders the statement encoded by T1 (Othello is a Tragedy)
as more likely than the statement encoded by T2 (England
is a Tragedy).

For each predicate p ∈ RG, the weights λg
p and λh

p can be
fixed in advance, for instance by encoding an expert’s domain
knowledge. As an alternative, such weights can be learned
from data jointly with the model parameters Θ. We discuss
this aspect in the following section.

5. LEARNING THE MODEL PARAMETERS
In TransE and related models [5, 4], the optimal parameters
Θ are learned from data. Specifically, they are estimated
by incrementally increasing the prediction score of visible
triples in G, while decreasing the score of unobserved triples
in SG\G. During the learning process, unobserved triples are
randomly generated by corrupting visible triples, by replacing
either their subject or their object with another entity in G.
More formally, given an observed triple T ∈ G, let CG(T )
denote the set of all corrupted triples obtained by replacing
either the subject or the object in T with another entity:

CG(〈s, p, o〉) = {〈s̃, p, o〉 | s̃ ∈ EG} ∪ {〈s, p, õ〉 | õ ∈ EG}.

The optimal model parameters Θ̂ can be learned by mini-
mizing a margin-based ranking loss, by solving the following
optimization problem:

minimize
Θ

∑
T∈G

∑
T̃∈CG(T )

[
γ − f(T ; Θ) + f(T̃ ; Θ)

]
+

subject to ∀x ∈ EG : ‖ex‖ = 1,

(4)

where [x]+ = max{0, x}, and γ ≥ 0 is a hyper-parameter
referred to as margin. The loss function in Eq. 4 enforces
the prediction score in observed triples to be higher than the
score of their corrupted variants, by a margin of at least γ.
The norm constraints in the optimization problem prevent to
trivially solve the problem by increasing the norm of latent
factors [4]. We refer to [5, 4] for more informations on solving
the minimization problem in Eq. 4 by using the Stochastic
Gradient Descent (SGD) algorithm. In this work, we propose
learning the additional schema-related parameters λ jointly
with the model parameters Θ by extending the minimization



Table 2: Link Prediction Results: Test performance of several latent factor models (f) and their schema-aware
extensions (fS) on the Freebase (FB15k), YAGO3 and DBpedia 2014 (Music) datasets. Results show the Mean
Rank (the lower, the better) and Hits@10 (the higher, the better) in the Raw and Filtered settings.

Metric
Mean Rank Hits@10 (%)

Raw Filtered Raw Filtered
f fS f fS f fS f fS

Dataset Freebase (FB15k)
Unstructured 595 196 488 89 9.7 41.1 13.7 55.0

TransE 213 196 86 70 44.2 45.4 62.3 64.1
ScalE 201 172 84 55 45.7 47.2 65.7 68.2

TransE+ 218 202 91 75 41.8 42.7 57.8 59.4

ScalE+ 218 195 82 61 48.1 49.8 69.2 71.1

Dataset YAGO3
Unstructured 6,548 2,619 4,792 863 7.4 18.2 10.3 23.6

TransE 2,541 2,372 1,438 1,127 28.3 29.0 42.1 42.6

ScalE 4,200 2,643 2,447 886 30.6 31.0 45.3 45.7

TransE+ 2,433 2,396 1,446 1,381 27.0 28.0 39.1 40.0

ScalE+ 3,475 2,629 1,716 869 29.0 29.0 41.0 41.0

Dataset DBpedia 2014
Unstructured 1,509 922 1,331 745 26.9 36.1 32.9 43.0

TransE 1,121 1,121 994 994 41.6 43.3 50.5 52.1

ScalE 1,299 1,143 1,149 962 46.8 47.5 57.4 58.5

TransE+ 1,173 1,173 1,059 1,059 40.5 41.6 50.1 51.3

ScalE+ 1,173 1,134 1,012 973 45.0 45.3 55.7 56.0

problem in Eq. 4 as follows:

minimize
Θ,λ

∑
T∈G

∑
T̃∈CG(T )

[
γ − fS(T ; Θ,λ) + fS(T̃ ; Θ,λ)

]
+

subject to ∀x ∈ EG : ‖ex‖ = 1

∀p ∈ RG : λg
p, λ

h
p ≥ 0, (5)

where an additional constraint enforces the schema-related
weights λ to be non-negative. We propose solving the min-
imization problem in Eq. 5 by using SGD. In [13], authors
experimentally found that using AdaGrad [7] for adaptively
selecting the learning rates in SGD yields sensibly better
results than those reported in [5]. In our experiments, we
also use AdaGrad for selecting the optimal learning rates.

6. EXPERIMENTS
This section is organized as follows. In Sect. 6.1, we describe
the datasets and evaluation metrics used in experiments. In
Sect. 6.2, we empirically evaluate the schema-aware exten-
sions to latent factor models, as proposed in Sect. 4.

6.1 Experimental Settings
In the experiments, we followed the evaluation protocols
adopted in [5]. We evaluate the schema-aware scoring func-
tions proposed in Sect. 4 on three datasets: Freebase
(FB15k), YAGO3 and DBpedia 2014 (Music). Each
dataset is composed by a training, a validation and a test-
ing set of triples, as summarized in Tab. 1, obtained by
randomly partitioning the triples in the RDF graph. Free-
base (FB15k) is a dataset published in [5], enriched with
RDFS triples freely available from the project website 6.
YAGO3 [10] is a large knowledge graph automatically ex-
tracted from several sources: our dataset is composed by
the facts stored in the yagoFacts component of YAGO3,

6https://developers.google.com/freebase/data

enriched with RDFS triples freely available from the project
website 7. DBpedia 2014 (Music) is a large DBpedia 2014
fragment extracted following the indications in [9], enriched
with RDFS triples available from the project website 8.

Link Prediction. We use the metrics used in [5] for evalu-
ating the rank, according to the model, of each test triple.
Specifically, for each test triple 〈s, p, o〉, its object o is re-
placed with every entity õ ∈ EG in the knowledge graph G in
turn, generating a set of corrupted triples in the form 〈s, p, õ〉.
The prediction scores of corrupted triples are first computed
by the model, then sorted in descending order, and used to
compute the rank of the correct triple. This procedure is
repeated by corrupting the subject. Aggregated over all test
triples, this procedure yields to the following metrics: aver-
aged rank (denoted by Mean Rank) and proportion of ranks
not larger than 10 (denoted by Hits@10). This is referred to
as the Raw setting. However, if corrupting a triple generates
another triple that exists in the knowledge graph, ranking
it before the original triple is not wrong. For such a reason,
corrupted triples that exist in either the training, validation
or test sets were removed before computing the rank of each
triple. This is referred to as the Filtered setting. In both
the Raw and Filtered settings, a lower Mean Rank is
better, while a higher Hits@10 is better.

6.2 Evaluation of the Schema-Aware Models
In the following experiments, we aim at assessing whether the
schema-aware extensions to latent factor models, proposed
in Sect. 4, improve the predictive accuracy of such models
in link prediction tasks. In particular, we compare TransE,
ScalE, TransE+ and ScalE+ with their schema-aware variants.
We also consider the Unstructured model, a latent factor
model used in [4] and [5] as an informed baseline. Hyper-
parameters k, δ and γ were selected so to maximize the

7http://yago-knowledge.org
8http://downloads.dbpedia.org/2014/
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model performance on the validation set: we selected k in
{20, 50, 100, 200}, δ(x,y) in {‖x − y‖1, ‖x − y‖2,−xTy},
and set γ = 1. For assessing whether the schema-aware
extensions are beneficial to the predictive accuracy of latent
factor models, in experiments we proceeded as follows. At
first, we learned the parameters Θ of the scoring function
f( · ; Θ), as described in Sect. 5. Then, we learned the
schema-related parameters λ, encoding the weights of penalty
terms in the schema-aware scoring function fS( · ; Θ,λ), as
proposed in Sect. 4. Results, summarized in Tab. 2, show the
link prediction performance of models relying on the classic
scoring function f( · ; Θ) (denoted by f), and its schema-
aware variant fS( · ; Θ,λ) (denoted by fS). As discussed
in Sect. 5, model parameters Θ were learned by solving
the optimization problem in Eq. 5 using SGD, and using
AdaGrad [7] for selecting the optimal learning rates in SGD.

Results. In every experiment, we can see that the schema-
aware extension of each latent factor model yields better
results, in terms of the Hits@10 metric, in comparison with
the original model. In particular, we can see that less accurate
baseline Unstructured gains a huge benefit from the additional
schema information: for instance, we can see that, on the
Freebase dataset, its initial 13.7 Hits@10 improves to
55.0 Hits@10, becoming almost comparable with the 64.1
Hits@10 obtained with TransE. This is also true in the case of
the YAGO3 and DBpedia 2014 dataset, where the Hits@10
obtained with the Unstructured model improves from 10.3
to 23.6, and from 32.9 to 43.0, respectively. We also always
observe an improvement, although less evident, in the link
prediction accuracy for the TransE model and its variants.

7. CONCLUSIONS AND FUTURE WORKS
In this paper, we propose an unified method for leveraging
schema knowledge, expressed in RDFS, in latent factor mod-
els for link prediction in knowledge graphs. We adaptively
decrease the prediction score associated by the model to
new triples, depending on whether they imply previously
unknown and possibly conflicting type information. Our
experimental evaluations shows that the proposed methods
leads to more accurate link prediction models. Source code
and datasets for reproducing the experiments are available
on-line: https://github.com/knowledgegraph/schema.

Future Works. Although widely adopted, RDFS is not the
only formalism for encoding schema information in KGs. We
aim at devising methods for leveraging schema knowledge
represented in more expressive formalisms, such as OWL 2 9.
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