
Can Real-Time Machine Translation Overcome Language Barriers in Distributed
Requirements Engineering?

Fabio Calefato, Filippo Lanubile, Pasquale Minervini
Dipartimento di Informatica

Università degli Studi di Bari
Bari, Italy

calefato,lanubile@di.uniba.it, pasquale.minervini@uniba.it

Abstract—In global software projects work takes place over
long distances, meaning that communication will often involve
distant cultures with different languages and communication
styles that, in turn, exacerbate communication problems.
However, being aware of cultural distance is not sufficient to
overcome many of the barriers that language differences bring
in the way of global project success. In this paper, we
investigate the adoption of automatic machine translation
(MT) services in synchronous text-based chat in order to
overcome any language barrier existing among groups of
stakeholders who are remotely negotiating software
requirements. We report our findings from a simulated study
that compared the performance and the effectiveness of two
MT services in translating the messages exchanged during four
distributed requirements engineering workshops. The results
show that (a) Google Translate produces significantly more
intelligible translations than Apertium from English to Italian;
(b) both services can be used in text-based chat without
disrupting real-time interaction.

Keywords-machine translation; cultural distance; language
barrier; distributed development; requirements engineering;
simulation

I. INTRODUCTION

Global software development requires close cooperation

of individuals with distant cultural backgrounds. Cultural
distance stems from the degree of difference between the
sites and manifests itself in two forms, organizational culture
and national culture. Organizational culture encompasses the
unit’s norms and values, including methodologies such as
project management practices [7]. More interesting to our
research, national culture encompasses an ethnic group’s
norms, values, and spoken language, often delineated by
national boundaries [7].

Cultural difference poses formidable challenges for
achieving a shared understanding of the requirements,
especially due to language disparities between stakeholders
involved [17]. Language is an important component of
national cultural distance and a factor that largely accounts
for the success of offshore IT work in countries with strong
English language capabilities, such as Ireland, the
Philippines, and Singapore [7]. Indeed, when language

difficulties begin to cause confusion, cultural differences can
worsen awkward situations [13]. However, being aware of
cultural distance is not sufficient to overcome many of the
barriers that language differences bring in the way of global
project success [20].

In this paper, we investigate the adoption of automatic
machine translation (MT) services in a synchronous text-
based chat in order to prevail over language barriers when
stakeholders are remotely negotiating software requirements.
We selected requirements engineering as the appropriate
domain for this study because it is the most communication-
intensive activity of software development and thus the one
that is alleged to suffer more from language difficulties.

Considering the rather exploratory nature of this study,
we run a simulation in which we used two MT systems,
namely Google Translate1 and Apertium2

II. MACHINE TRANSLATION

, to translate the
logs collected from requirements engineering workshops.
The remainder of this paper is structured as follows. In
Section II we briefly overview the machine translation
research field, showing the two approaches and systems used
in our simulation. Section III goes onto describing our
simulation procedure run in order to explore the performance
of MT in real-time text chat. The findings from our
simulation are presented and discussed, respectively, in
Section IV and Section V. Finally, we conclude in Section
VI.

Machine translation (MT) may be defined as the use of a
computer to translate a text from one natural language, the
source language, into another one, the target language [31].
MT is difficult mainly because translation per se involves a
huge amount of human knowledge that must be coded in a
usable form. Natural languages are highly ambiguous; two
languages do not always express the same content in the
same way [3]. Research in the field has defined several
approaches to develop MT systems, such as the rule-based
and the corpus-based approaches.

1 http://translate.google.com
2 http://www.apertium.org

A. Rule-based approach to MT: Apertium
Rule-based MT systems use knowledge in the form of

rules, explicitly coded by human experts, which attempt to
codify the translation process. Rule-based systems heavily
depend on linguistic knowledge, such as bilingual
dictionaries [3]. The most notable advantages of rule-based
MT services include: more accurate translations, that is,
translations more faithful to the meaning of the original text;
the ability to explicitly encode linguistic knowledge so that
both humans and automatic systems can process; the ease of
diagnosing and fix translation errors, like wrong rules in
modules or wrong entries in dictionaries. Nevertheless, a
rule-based approach has its drawbacks too; most notably a
considerable human effort is required in order to develop the
necessary linguistic resources (e.g. vocabularies and
grammars).

Apertium is an open source, rule-based machine
translation platform, which provides SOAP and REST
interfaces to the translation service [2]. As of this writing, it
supports the translation between any two pairs of over 30
languages.

In [22] we measured the performance of the Apertium
service. The performance was evaluated in terms of
efficiency (i.e. the time taken to perform translations of
sentences of growing length) and scalability (i.e. the time
taken to perform translations requested by a growing number
of concurrent clients). In our previous work, however, we did
not address the quality of the translation provided by
Apertium.

B. Corpus-based approach to MT: Google Translate
Corpus-based MT systems use large collections of

parallel texts (i.e. pairs consisting of a text in a source
language and its translation into a target language) as the
source of knowledge from which the engine learns how to
perform translations. Corpus-based MT systems tend to
produce translations more fluent than rule-based systems,
which instead appear to be more “mechanical”. However,
such approach requires large amounts of parallel texts (in the
order of tens of millions of words) to achieve reasonable
translation quality [26]. Compared to the rule-based
approach, the corpus-based approach is particularly
appealing to researchers because systems can be trained
automatically, without any direct human intervention.

Google Translate is an example of statistical MT system
that follows the corpus-based approach. In fact, the system
does not apply grammatical rules, since its algorithms are
based on statistical analysis rather than traditional rule-based
analysis. Instead, Google Translate applies statistical
learning techniques to build a translation model, relying on a
large number of words of text, both monolingual text in the
target language and text consisting of examples of human
translations between the source and the target languages.

The Google Translate service can be used by third-party
applications because it exposes a RESTful interface that
returns responses encoded as JSON results. As of this
writing, Google Translate supports the translation between
any two pairs of over fifty languages.

C. A MT plugin for eConference
eConference [6] is a text-based distributed meeting

system. The primary functionality provided by the tool is a
closed group chat, augmented with agenda, meeting minutes
editing, and typing awareness capabilities. The tool is built
on Eclipse RCP, a pure-plugin platform that allows for full
extensibility.

We developed a plugin for eConference that allows
selecting both the MT service and the language pair to
employ for automatically translating incoming messages
during one-to-one and group chat sessions. When a new
message is processed by eConference, the MT plugin
invokes the configured MT service using the proper web-
service interfaces, in order to show the translated messages
along with the original text.

Figure 1 shows a screenshot of eConference, with the
MT plugin installed, and an example of a one-to-one chat
session real-time translation, using the Apertium service
(Figure 1a), with original sentence written in English (Figure
1b) translated to Italian in box (Figure 1c).

III. RELATED WORK
Machine translation is an established technology, some

50 years in the making. The technology available today – i.e.
real-time, online conversation – is experiencing tremendous
growth of interest, on the heels of the Internet continuous
expansion.

As business becomes more global and firms open offices
in other countries, the need for companies to communicate in
multiple languages with customers, partners, and employees
becomes increasingly important [30]. These trends have
increased the demand for computer-based translation
technology research. In [14] Hogan & Frederking presented
WebDIPLOMAT, a MT service that aims to produce more
accurate translation by building a statistical model from the
combination of multiple MT services already available. In
[4] Bangalore et al. evaluated the translation quality of a MT
service trained using a text corpus made of chat logs
collected from the Hubbub prototype used by AT&T
employees. Translation quality was measured in terms of the
changes (i.e. moves, corrections, and substitution of words)
necessary to turn the MT output into the chosen reference
translation. However, the approach of choosing a priori a
reference translation as the correct one has a major drawback
in the sense that many correct translations of the same input
sentence may exist, despite being completely different in
terms of style. Yamashita et al. [24][25] studied the effects
of machine translation on mutual understanding, which is
affected by the asymmetry of machine translation since the
sender of a message does not know how well it has been
translated to the target language. A limitation of this study is
that the researches employed picture description as the
experimental tasks, thus focusing mostly on the difficulties
arising when describing objects in machine translated
discussions.

Figure 1. A screenshot of eConference showing instant messages automatically translated from English to Italian.

Accurate computer translation is particularly appealing

because it is quicker, more convenient, and less expensive
than human translators are. Military coalitions are another
example of global teams suffering from multi-cultural and
multi-language bottlenecks. Odgen [28] and Jones & Parton
[11] provide two examples of employing instant messaging
tools augmented with automatic machine translation, for
helping military coalition partners to communicate using
their own language. Recently, the EU commission funded
the MOLTO project (Multi-lingual Online Translation)3

Finally, aside from research prototypes or projects, also
commercial tools that offer cross-language chat services are
available, such as IBM Lotus Translation Services for
Sametime

 with
the goal of producing accurate machine-translations of the
official documents and save the billion euro currently spent
per year to translate them in the 23 official languages of the
Union.

4 and, lately, VoxOx 5

IV. METHOD

, which provides cross-
language translations for most of the existing instant
messaging networks.

The goal of the simulation was to evaluate the feasibility of
adopting a MT service in a cross-language, real time, text-
based chat. In particular, the simulation compared the
performance (i.e. effectiveness and efficiency) of the two
MT services described earlier, Apertium and Google
Translate.

3 http://www.molto-project.eu
4 http://www-01.ibm.com/software/lotus/sametime
5 http://www.voxox.com

While the effectiveness of a MT service relates to the
quality of the translated output (i.e. accuracy), the efficiency
relates to the amount of time necessary to translate the
original input text (i.e. speed). Efficiency is fundamental in
our scenario because if the use of MT involves a large
amount of additional time, then it would break the real-time
feature of a chat and hamper the synchronous
communication.

A. Evaluation of Translation Quality
Evaluating the quality of a translation is an extremely

subjective task and disagreements about evaluation
methodology are rampant [1][23]. Nevertheless, evaluation
is essential. In this study, we entailed four human raters to
evaluate accurately each translation in terms of intelligibility,
which is affected by grammatical errors, mistranslations and
untranslated words [27].

In our simulation, the raters assessed the intelligibility of
translations assigning scores to output sentences produced by
the two MT services. The scoring scheme adopted is a 4-
point Likert scale (see Table I), anchored with values 4 =
completely unintelligible and 1 = completely intelligible. The
scale, proposed in [16], seemed appropriate to our goal
because it is not too fine grained (i.e. does not consist of too
many values), it can be easily applied as descriptions are
well defined (i.e. can be uniformly interpreted by
evaluators), and there is no middle value (i.e. helps to avoid
central tendency bias in ratings by forcing raters to judge the
output as either intelligible or not) [10][18].

Before the official scoring session was held, the raters
participated in a training session in which they become
acquainted with the scale. The raters were all master students

TABLE I. INTELLIGIBILITY SCALE [16].

Value Description

1
Completely intelligible
The sentence is perfectly clear and intelligible. It is
grammatical and reads like ordinary text.

2
Fairly intelligible
The sentence is generally clear and intelligible. Despite some
inaccuracies or infelicities of the sentence, one can understand
(almost) immediately what it means.

3
Poorly intelligible
The general idea of the sentence is intelligible only after
considerable study. The sentence contains grammatical errors
and/or poor word choices.

4
Completely unintelligible
The sentence is unintelligible. Studying the meaning of the
sentence is hopeless; even allowing for context, one feels that
guessing would be too unreliable.

completing their thesis project in our laboratory, at the
University of Bari, and were selected among those who
proved to have a good knowledge of English.

B. Simulation
The text corpus used to run the simulation is composed

of chat logs, written in English and collected from five
requirements workshops run during an experiment on the
effects of text-based communication in distributed
requirements engineering [5]. We used one workshop log
(CL1) to train the raters, whereas the remaining four (CL2-
CL5) were employed as the test set during the simulation.
Overall, the test set accounted for over 2.000 utterances to be
translated by both MT services. Participants in each
workshop ranged from five to eight undergraduate students
attending a requirements engineering course at the
University of Victoria, Canada. During a workshop the
participants, either acting as a client or as a developer, had
first to elicit the requirements specification of a web
application (first session); then, they had to negotiate and
reach closure on the previously collected requirements
(second session). Table II contains an excerpt of the chat
logs, showing the messages exchanged between two clients
and two developers.

As a first step, we modified our eConference MT plugin
in order to process XML files containing the chat log entries.
The plugin spawned several threads, one for each participant
in the workshop, which processed the file and sent in chat
messages. Each thread also received any message sent and
then invoked the translation service one by one. Because all
the messages in the logs are timestamped, we were able to
send them with the same timing as in the real workshops,
that is, we recreated a realistic condition similar to the one
that would have happened if the real requirements
workshops had relied on MT. Besides, we also put each
translation service under the same stress condition in which
messages sent at the same time would have caused the
translation service to be invoked concurrently by each
participant in the workshop.

The simulation was executed on a box running Debian
Linux, with a 2GHz Dual-Core AMD Opteron CPU, and 4
GB of memory. Finally, in order to compare the performance
of Apertium and Google Translate, the simulation was run
twice on the same text corpus and on the same machine,
once for each MT service.

V. RESULTS
Our analysis focused on evaluating both the effectiveness

and the performance in order to evaluate, respectively, the
goodness of translations in terms of intelligibility, and the
extra amount of time taken to translate the sentences from
the original language to the target language.

A. Translation Quality Results
The four coders performed the rating separately. We

measured the inter-rater agreement by computing the Fleiss’
Kappa index for multiple raters [9]. In particular, for the
Apertium service, the Kappa index shows a fair agreement
level (k=.37) [1]. Instead, .for Google Translate, the Kappa
index measured shows a moderate agreement level between
the raters (k=.47) [1].

In order to identify differences in the quality of
translation produced by the two MT services, as perceived
by the raters, we first evaluated how many sentences were
evaluated as intelligible (i.e. belonging to categories 1 and 2)
and unintelligible (i.e. belonging to categories 3 and 4).
Figure 2 shows that, for Google Translate, over a half of the
whole test suite (2053 sentences) was judged intelligible
(63.3%). Conversely, for Apertium over the 62.2% of the
translated sentences was judged unintelligible. In addition,
we found that the mean and median ratings for Google
Translate were, respectively, 2.17 and 2.0. Instead, for
Apertium the mean and median ratings were 2.8 and 3.5,
respectively.

Afterwards, we performed the paired t-test for two
related samples. We summed the ratings from each rater for
each translated utterances, thus obtaining N=2053 summed
scores for each MT service. The summed scores obtained
ranged between 4 (best) and 16 (worst). The paired t-test
result, shown in Table III, revealed a statistically significant
difference (p=.00) in favor of Google Translate, which thus
was judged to produce more accurate translations than
Apertium.

TABLE II. AN EXCERPT FROM THE CHAT LOGS.

Student Message

Client 1 we don't necessarily need the conversations to be stored in a
DB...

Client 2 We also need application sharing. IE - letting someone else
access a single window on my computer.

Client 1 and yeah, we do need application sharing

Dev 1 Ok

Dev 1 we have questions about that so just wanted an overview

37,50

63,31

62,62

36,69

0% 20% 40% 60% 80% 100%

Apertium

Google Translate

Intelligible
(categories 1-2)

Unintelligible
(categories 3-4)

Figure 2. Percentage of intelligible vs. unitelligible ratings.

B. Time performance results.
Each data point in the following two figures was obtained

as an average measure of 256 repeated translation requests.
Figure 3 shows that Apertium response times are lower

than those of Google Translate are. In fact, in the worst case,
Apertium took less than 30 ms to complete, on the average,
the repeated translation requests, whereas Google service
took twice the amount of time (over 70 ms). Conversely, the
graph of response times shows that Google Translate
performance does not depend on the length of the sentences,
as in the case of Apertium.

Figure 4 plots the response times of the two services
when completing concurrent translation requests from an
increasing number (from 1 to 8) of clients. The data points
were again collected as an average measure of 256 repeated
requests for translating the longest sentences available in the

whole data set (362 characters). The graph shows that
Apertium performances are better when the numbers of
concurrent requests are low (less than 4), whereas Google
Translate is better able to cope with a growing number of
concurrent clients.

VI. DISCUSSION
The two main results of our work are the assessment of

the translation quality (i.e. accuracy) and the performance
(i.e. speed) of the Google Translate and Apertium services.

With respect to the performance test, we found good time
responses for both services, which also proved to scale up
well as the number of clients – i.e. concurrent requests – and
the length of sentences increase (see Figure 3 and 4,
respectively). However, the time performance of Apertium
(less than 30 ms in the worst case) is better than Google
(around 70s ms in the worst case). This is because, Google
service is publicly available (i.e. other people might be using
it at the same time of our tests) and thus the load of requests
to the well-known Google Translate service was reasonably
much higher than that served by Apertium, which run instead
as a private service. Nevertheless, we noticed that Apertium
response time increases with the length of sentence, while
Google Translate performance tends to be rather stable,
independently of sentence length and concurrent requests.

TABLE III. RESULTS FROM THE PAIRED T-TEST.

 Mean Std. Dv. N Diff. Std. Dv. Diff. t df p

Apertium 11.19 4.06
2053 -2.58 4.23 -27.06 2052 0.00

Google Translate 8.66 4.13

Figure 3. A comparison between the amount of time (in ms) taken by

Google Translate and Apertium services to translate sentences of growing
lengths.

Figure 4. A comparison between the amount of time (in ms) taken by
Google Translate and Apertium services to complete concurrent requests

from an increasing number of clients.

With respect to the translation quality, we employed four
raters to judge the intelligibility of the output produced by
the two services. We then evaluated the inter-rater agreement
by computing multiple Kappa index, which was measured
0.36 for Apertium and 0.46 for Google Translate. The fair to
moderate Kappa values measured can be partially explained
by having employed non-bilingual raters for the evaluation
of translations quality. In fact, we employed four Italian
master students who are not native English speakers,
although knowledgeable in software engineering and thus
fully able to understand the context of conversations. Hence,
possible disparities in raters’ language skill can probably
account for the moderate agreement levels achieved.

Besides, Google Translate was found to produce
significantly more accurate (i.e. more intelligible)
translations than Apertium. On the average, a Google
Translate translation is rated 2.17 (median 2.0), with over the
63% of translations falling into category 1 or 2, that is,
judged to be fully intelligible by the raters. Conversely,
Apertium average translation quality is rated 2.8 (median
3.5), with most of the translation produced (~63%) falling in
category 3 or 4, that is, judged to be partially or completely
unintelligible by the raters.

We identified a couple of reasons why Apertium
achieved lower intelligibility ratings than Google. The first
reason is the low quality of the translation rules defined in
the English-Italian pair. We tried to address this issue using
one of the five chat logs available – the one not used by
raters for the evaluation – to add linguistic knowledge to the
EN-IT pair6

Despite achieving better intelligibility results, Google
Translates suffers from at least a couple of drawbacks. The
first one is due to the statistical approach used, which
prevents Google Translate from being improved, as in the
case of rule-based systems, to which specific domain
knowledge can be added in form of new dictionaries and
translation rules. The second drawback is a limitation that
raises privacy concerns. When using Google Translate, one
cannot install the MT service on a company’s private server,
meaning that private data must be sent to Google servers for
being translated.

 in Apertium by adding missing rules and words.
Nevertheless, intelligibility ratings were not only lower than
those produced by Google Translate, but also worse than
those obtained using Apertium with the full-fledged English-
Spanish pair, which we evaluated informally. The second
one is that Google service was better able to cope with short,
slang forms, typical of text-based chats, such as “hes”
instead of “he’s”, “dont" instead of “don’t”, which instead,
Apertium proved not to manage well.

Overall, these results suggest that machine translation
services can be helpfully employed in multicultural context
to reduce language disparity issues in a quick and convenient
way. Obviously, the generalizability of the results from our
study is limited by being a simulation. We identified at least
three major threats.

First, our simulation involved only one-way translations,
that is, utterances were only translated from English to

6 SVN revision 19832

Italian and not vice versa. Instead, a more realistic
experiment would involve two-way translations between
cross-language groups. One could reasonably argue that two-
way translation would increase intelligibility issues. One way
to overcome this limitation, is studying how machine
translation affect the establishment of common ground, that
is the mutual knowledge that people involved in a discussion
share and the awareness of it. In fact, mutual knowledge and
its awareness are both affected by the asymmetry of machine
translation, which prevents the sender of a message to know
whether it has been translated well and, consequently,
accepted by the receiver [25].

Second, we evaluated translation quality exclusively in
terms of intelligibility, that is, the raters evaluated the
comprehensibility of a sentence in the context provided by
the history of all previous messages. When evaluating
translation quality other dimensions are often taken into
account, such as style (or fluency), and accuracy (or fidelity).
However, as Hutchins and Somers noted [16], style matters
only when a translation is intelligible; furthermore accuracy
scores are often closely related to the intelligibility scores
since high intelligibility normally means high accuracy. On
the contrary, it is more efficient to analyze just those cases
where the output is rated incomprehensible, leading one to
suppose something has gone wrong.

Finally, our study worked on the sentence as the unit of
analysis and, consequently, the raters judged intelligibility of
sentences according to the context, whereas in group-
collaboration task performance is paramount. Hence, even
though results from our simulation are somewhat
encouraging, we can by no means hypothesize whether the
translation quality of either MT service would be good
enough to allow participants to complete a group task – in
our scenario, allow stakeholders to define and negotiate
software requirements for a small web application. Previous
works in the field of MT (e.g. [27]) show that although
employing machine translation does not prevent task
completion, it considerably slows it down. Nevertheless,
these works compared the interaction performance of
machine-translated groups to those of standard groups on
puzzle-like tasks execution. One can reasonably argue that
greater concerns would arise during the execution of
requirements engineering group tasks. Requirements
engineering activities, such as elicitation and negotiation
workshops, are complex, communication-intensive tasks that
require specialized knowledge and techniques to be applied.
As such, during their execution low quality translations
could worsen or even cause misunderstandings, which in
turns might generate defects in the requirements
specifications.

VII. CONCLUSIONS & FUTURE WORK
Global software projects are affected by the combination

of geographical, temporal, and cultural distance [7]. While
there is a growing literature about the effects of distance and
time differences, we know little about how to handle
intercultural factors [20]. In fact, work that takes place over
long distances means that communication will often involve

distant cultures, with different languages and communication
styles exacerbating communication problems [12].

To date research efforts have mostly focused on the
organizational (i.e. processes and coordination) aspects of
globally distributed labor [13], as well as on computer-
mediated communication [8] and tools [32], but little on
culture per se. In fact, only in the last decade research started
to investigate on the specific issues of cultural difference in
globally distributed projects [7][21][29].

In this paper we explored the idea of applying automatic,
cross-language translation to communication-intensive
activities, such as distributed requirements engineering, we
compared two successful MT services, which entail two
completely opposite approaches, namely rule-based
(Apertium) and corpus-based (Google Translate).

In our simulation, we used chat logs collect from five
distributed requirements engineering sessions. The logs were
first translated from English to Italian and then translation
quality was evaluated by multiple human raters in terms of
intelligibility. Our findings show Google Translate produces
significantly more intelligible translations than Apertium.
Besides, we also tested the performance in terms of the
amount of time requested to translate sentences with multiple
concurrent requests to the MT services. The rather small
amount of extra time necessary to translate concurrently chat
messages (about 70 ms on in the worst case observed) shows
that state-of-the-art MT services can be embedded into
synchronous text-based chat without disrupting real-time
interaction.

As future work we intend to set up a controlled
experiment rather than a simulation, so that: (1) both cross-
language groups and same language groups of participants
can be compared while interacting to complete a knowledge-
and communication-intensive task, such as a requirements
elicitation or negotiation workshop; (2) a MT service is used
for two way-translations; (3) language pairs other than
English-Italian are used, which are more relevant to the
global software development scenario (e.g. English-
Portuguese).

ACKNOWLEDGMENT
We would like to thank the students who performed the

evaluations of the translation quality.

REFERENCES
[1] D. G. Altman, Practical Statistics for Medical Research, Chapman

and Hall, London, 1991.
[2] C. Armentano-Oller, A. M. Corbì-Bellot, M. L. Forcada, M. Ginestì-

Rosell, B. Bonev, S. Ortiz-Rojas, J. A, Perez-Ortiz, G. Ramirez-
Sanchez, and F. Sanchez-Martinez, “An open-source shallow-transfer
machine translation toolbox: consequences of its release and
availability,” Proc. workhsop on Open-Source Machine Translation
(OSMaTran), Machine Translation Summit X, Phuket, Thailand, pp.
23–30, 2005.

[3] D. Arnold, “Why translation is difficult for computers”, In Computers
and Translation: A translator's guide. Benjamins Translation Library,
2003.

[4] Bangalore, S., Murdock, V., and Riccardi, G. “Bootstrapping
bilingual data using consensus translation for a multilingual instant
messaging system.” Proc. 19th Int’l Conference on Computational
Linguistics (COLING), Taipei, Taiwan, Aug. 24 – Sep. 1 2002,
Volume 1, doi:10.3115/1072228.1072362.

[5] F. Calefato, D. Damian, and F. Lanubile, "An Empirical Investigation
on Text-Based Communication in Distributed Requirements
Engineering", Proc. 2nd Int’l Conf. Global Software Engineering
(ICGSE ’07), Munich, Germany, 27-30 August, 2007, doi:
10.1109/ICGSE.2007.9.

[6] F. Calefato and F. Lanubile, "Using Frameworks to Develop a
Distributed Conferencing System: An Experience Report", Software:
Practice and Experience, 2009, vol. 39, no. 15, pp. 1293–1311, doi:
10.1002/spe.937.

[7] E. Carmel, and R. Agarwal, “Tactical Approaches for Alleviating
Distance in Global Software Development,” IEEE Softw., vol. 18, no.
2, pp. 22-29, Mar. 2001, doi:10.1109/52.914734.

[8] D. Damian, F. Lanubile, and T. Mallardo, "On the Need for Mixed
Media in Distributed Requirements Negotiations", IEEE Transactions
on Software Engineering, Vol. 34, No. 1, January 2008, pp. 116-132.

[9] J. L. Fleiss. Statistical methods for rates and proportions. 2nd ed.
New York: John Wiley, 1981, pp. 38–46

[10] R. Garland. “The Mid-Point on a Rating Scale: Is it Desirable?”,
Marketing Bulletin, Vol. 2, 1991, pp. 66-70.

[11] S. Jones and G. Parton. “Collaboration Across the Multinational
Battlespace in Support of High-stakes Decision Making - Instant
Messaging with Automated Language Translation”, Technical report,
The Mitre Corporation, 2008.

[12] J.D. Herbsleb, and D. Moitra, “Guest Editors' Introduction: Global
Software Development,” IEEE Softw., vol. 18, no. 2, 2001, pp. 16-20.

[13] J.D. Herbsleb. “Global Software Engineering: The Future of Socio-
technical Coordination,” Future of Software Engineering (FOSE’07),
Washington, DC, May 23 - 25, 2007, pp. 188-198,
doi:10.1109/FOSE.2007.11.

[14] C. Hogan and R. Frederking, “WebDIPLOMAT: a Web-based
interactive machine translation system.” Proc. 18th Int’l Conference
on Computational Linguistics - Volume 2, Saarbrücken, Germany,
Jul. 31 – Aug. 04, 2000, pp. 1041-1045, doi:10.3115/992730.992801.

[15] H. Holmstrom, E. O. Conchuir, P. J. Agerfalk, and B. Fitzgerald,
"Global Software Development Challenges: A Case Study on
Temporal, Geographical and Socio-Cultural Distance," 1st Int’l Conf.
on Global Software Engineering (ICGSE '06), Florianopolis, Brasil,
Oct. 2006, pp.3-11, doi:10.1109/ICGSE.2006.261210.

[16] W. J. Hutchins and H. L. Somers, An Introduction to Machine
Translation, Academic Press, 1992.

[17] Y. Hsieh, “Culture and Shared Understanding in Distributed
Requirements Engineering,” 1st Int’l Conf. on Global Software
Engineering (ICGSE’06), Florianopolis, Brazil, Oct. 2006.

[18] R. Johns. “One Size Doesn't Fit All: Selecting Response Scales For
Attitude Items.” Journal of Elections, Public Opinion, and Parties,
Vol. 15, No. 2, 2005, pp. 237-264.

[19] D. Jurafsky and J. H. Martin, “Speech and Language Processing 2nd
ed.,” Prentice Hall Series in Artificial Intelligence, Prentice Hall,
2008.

[20] P. Kruchten, “Analyzing intercultural factors affecting global
software development - a position paper,” 3rd Int’l Workshop on
Global Software Development (GSD 2004), Edinburgh, Scotland,
UK, 24 May 2004, doi:10.1049/ic:20040315.

[21] A.E. Milewski, M. Tremaine, F. Köbler, R. Egan, S. Zhang, and P.
O'Sullivan, “Guidelines for effective eridging in global software
engineering,” Software Process: Improvement and Practice, vol. 13,
no. 6, 2008, pp. 477-492.

[22] P. Minervini, “Apertium goes SOA: an efficient and scalable service
based on the Apertium rule-based machine translation platform,”
Proc. 1st Int’l Workshop on Free/Open-Source Rule-Based Machine
Translation, Alacant, Spain, Nov. 2-3, 2009, pp. 59–66.

[23] R. Mitkov, “The Oxford Handbook of Computational Linguistics,”
Oxford Handbooks in Linguistics S., Oxford University Press, 2003.

[24] N. Yamashita and T. Ishida. “Effects of machine translation on
collaborative work.” Proc. 20th Int’l Conference on Computer
Supported Cooperative Work (CSCW '06), Banff, Alberta, Canada,
November 04-08, 2006, pp. 515-524, doi:10.1145/1180875.1180955.

[25] N. Yamashita, R. Inaba, H. Kuzuoka, and T. Ishida. “Difficulties in
establishing common ground in multiparty groups using machine
translation.” Proc. 27th Int’l Conf. on Human Factors in Computing
Systems (CHI '09). Boston, USA, April 4-9, 2009, pp, 679-688,
doi:10.1145/1518701.1518807.

[26] F. J. Och and H. Ney, The alignment template approach to statistical
machine translation. Computational Linguistics, vol. 30, no. 4, pp.
417-449, 2004.

[27] W. Ogden, R. Zacharski, S. An and Y. Ishikawa, “User choice as an
evaluation metric for web translation in cross language instant
messaging applications,” Proc. Machine Translation Summit VII,
Ottawa, Canada, Aug. 2009.

[28] W. Odgen. “A Task ‐ Based Evaluation Method for Embedded
Machine Translation in Instant Messaging Systems,” in Advanced
Decision Architectures For The Warfighter: Foundations and
Technology (P. Mcdermott And L. Allender eds.), chapter 19, pp.
341-357, Aug. 2009.

[29] J. S. Olson and G. M. Olson, Culture Surprises in Remote Software
Development Teams, ACM Queue, vol. 1, no. 9, Dec. 2003, pp. 52-
59, doi:10.1145/966789.966804.

[30] L.D. Paulson, “Translation technology tries to hurdle the language
barrier,” Computer, vol. 34, no. 9, 2001, pp. 12-15.

[31] F. Sánchez-Martínez, and M. L. Forcada, “Inferring shallow-transfer
machine translation rules from small parallel corpora,” Journal of
Artificial Intelligence Research, vol. 34, p. 605-635.

[32] H. Spanjers, M. ter Huurne, B. Graaf, M. Lormans, D. Bendas, R. van
Solingen, "Tool Support for Distributed Software Engineering," Int’l
Conf. Global Software Engineering. (ICGSE '06), Oct. 2006, pp.187-
198.

	I. Introduction
	II. Machine Translation
	A. Rule-based approach to MT: Apertium
	B. Corpus-based approach to MT: Google Translate
	C. A MT plugin for eConference

	III. Related Work
	IV. Method
	A. Evaluation of Translation Quality
	B. Simulation

	V. Results
	A. Translation Quality Results
	B. Time performance results.

	VI. Discussion
	VII. Conclusions & Future Work
	Acknowledgment
	References

