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Abstract—In global software projects work takes place over 
long distances, meaning that communication will often involve 
distant cultures with different languages and communication 
styles that, in turn, exacerbate communication problems. 
However, being aware of cultural distance is not sufficient to 
overcome many of the barriers that language differences bring 
in the way of global project success. In this paper, we 
investigate the adoption of automatic machine translation 
(MT) services in synchronous text-based chat in order to 
overcome any language barrier existing among groups of 
stakeholders who are remotely negotiating software 
requirements. We report our findings from a simulated study 
that compared the performance and the effectiveness of two 
MT services in translating the messages exchanged during four 
distributed requirements engineering workshops. The results 
show that (a) Google Translate produces significantly more 
intelligible translations than Apertium from English to Italian; 
(b) both services can be used in text-based chat without 
disrupting real-time interaction.  

Keywords-machine translation; cultural distance; language 
barrier; distributed development; requirements engineering; 
simulation 

I.  INTRODUCTION 
 
Global software development requires close cooperation 

of individuals with distant cultural backgrounds. Cultural 
distance stems from the degree of difference between the 
sites and manifests itself in two forms, organizational culture 
and national culture. Organizational culture encompasses the 
unit’s norms and values, including methodologies such as 
project management practices [7]. More interesting to our 
research, national culture encompasses an ethnic group’s 
norms, values, and spoken language, often delineated by 
national boundaries [7]. 

Cultural difference poses formidable challenges for 
achieving a shared understanding of the requirements, 
especially due to language disparities between stakeholders 
involved [17]. Language is an important component of 
national cultural distance and a factor that largely accounts 
for the success of offshore IT work in countries with strong 
English language capabilities, such as Ireland, the 
Philippines, and Singapore [7]. Indeed, when language 

difficulties begin to cause confusion, cultural differences can 
worsen awkward situations [13]. However, being aware of 
cultural distance is not sufficient to overcome many of the 
barriers that language differences bring in the way of global 
project success [20].  

In this paper, we investigate the adoption of automatic 
machine translation (MT) services in a synchronous text-
based chat in order to prevail over language barriers when 
stakeholders are remotely negotiating software requirements. 
We selected requirements engineering as the appropriate 
domain for this study because it is the most communication-
intensive activity of software development and thus the one 
that is alleged to suffer more from language difficulties. 

Considering the rather exploratory nature of this study, 
we run a simulation in which we used two MT systems, 
namely Google Translate1 and Apertium2

II. MACHINE TRANSLATION  

, to translate the 
logs collected from requirements engineering workshops. 
The remainder of this paper is structured as follows. In 
Section II we briefly overview the machine translation 
research field, showing the two approaches and systems used 
in our simulation. Section III goes onto describing our 
simulation procedure run in order to explore the performance 
of MT in real-time text chat. The findings from our 
simulation are presented and discussed, respectively, in 
Section IV and Section V. Finally, we conclude in Section 
VI. 

Machine translation (MT) may be defined as the use of a 
computer to translate a text from one natural language, the 
source language, into another one, the target language [31]. 
MT is difficult mainly because translation per se involves a 
huge amount of human knowledge that must be coded in a 
usable form. Natural languages are highly ambiguous; two 
languages do not always express the same content in the 
same way [3]. Research in the field has defined several 
approaches to develop MT systems, such as the rule-based 
and the corpus-based approaches. 

                                                           
1 http://translate.google.com 
2 http://www.apertium.org 



A. Rule-based approach to MT: Apertium 
Rule-based MT systems use knowledge in the form of 

rules, explicitly coded by human experts, which attempt to 
codify the translation process. Rule-based systems heavily 
depend on linguistic knowledge, such as bilingual 
dictionaries [3]. The most notable advantages of rule-based 
MT services include: more accurate translations, that is, 
translations more faithful to the meaning of the original text; 
the ability to explicitly encode linguistic knowledge so that 
both humans and automatic systems can process; the ease of 
diagnosing and fix translation errors, like wrong rules in 
modules or wrong entries in dictionaries. Nevertheless, a 
rule-based approach has its drawbacks too; most notably a 
considerable human effort is required in order to develop the 
necessary linguistic resources (e.g. vocabularies and 
grammars). 

Apertium is an open source, rule-based machine 
translation platform, which provides SOAP and REST 
interfaces to the translation service [2]. As of this writing, it 
supports the translation between any two pairs of over 30 
languages. 

In [22] we measured the performance of the Apertium 
service. The performance was evaluated in terms of 
efficiency (i.e. the time taken to perform translations of 
sentences of growing length) and scalability (i.e. the time 
taken to perform translations requested by a growing number 
of concurrent clients). In our previous work, however, we did 
not address the quality of the translation provided by 
Apertium. 

B. Corpus-based approach to MT: Google Translate 
Corpus-based MT systems use large collections of 

parallel texts (i.e. pairs consisting of a text in a source 
language and its translation into a target language) as the 
source of knowledge from which the engine learns how to 
perform translations. Corpus-based MT systems tend to 
produce translations more fluent than rule-based systems, 
which instead appear to be more “mechanical”. However, 
such approach requires large amounts of parallel texts (in the 
order of tens of millions of words) to achieve reasonable 
translation quality [26]. Compared to the rule-based 
approach, the corpus-based approach is particularly 
appealing to researchers because systems can be trained 
automatically, without any direct human intervention. 

Google Translate is an example of statistical MT system 
that follows the corpus-based approach. In fact, the system 
does not apply grammatical rules, since its algorithms are 
based on statistical analysis rather than traditional rule-based 
analysis. Instead, Google Translate applies statistical 
learning techniques to build a translation model, relying on a 
large number of words of text, both monolingual text in the 
target language and text consisting of examples of human 
translations between the source and the target languages.  

The Google Translate service can be used by third-party 
applications because it exposes a RESTful interface that 
returns responses encoded as JSON results. As of this 
writing, Google Translate supports the translation between 
any two pairs of over fifty languages. 

C. A MT plugin for eConference 
eConference [6] is a text-based distributed meeting 

system. The primary functionality provided by the tool is a 
closed group chat, augmented with agenda, meeting minutes 
editing, and typing awareness capabilities. The tool is built 
on Eclipse RCP, a pure-plugin platform that allows for full 
extensibility. 

We developed a plugin for eConference that allows 
selecting both the MT service and the language pair to 
employ for automatically translating incoming messages 
during one-to-one and group chat sessions. When a new 
message is processed by eConference, the MT plugin 
invokes the configured MT service using the proper web-
service interfaces, in order to show the translated messages 
along with the original text. 

Figure 1 shows a screenshot of eConference, with the 
MT plugin installed, and an example of a one-to-one chat 
session real-time translation, using the Apertium service 
(Figure 1a), with original sentence written in English (Figure 
1b) translated to Italian in box (Figure 1c). 

III. RELATED WORK 
Machine translation is an established technology, some 

50 years in the making. The technology available today – i.e. 
real-time, online conversation – is experiencing tremendous 
growth of interest, on the heels of the Internet continuous 
expansion.  

As business becomes more global and firms open offices 
in other countries, the need for companies to communicate in 
multiple languages with customers, partners, and employees 
becomes increasingly important [30]. These trends have 
increased the demand for computer-based translation 
technology research. In [14] Hogan & Frederking presented 
WebDIPLOMAT, a MT service that aims to produce more 
accurate translation by building a statistical model from the 
combination of multiple MT services already available. In 
[4] Bangalore et al. evaluated the translation quality of a MT 
service trained using a text corpus made of chat logs 
collected from the Hubbub prototype used by AT&T 
employees. Translation quality was measured in terms of the 
changes (i.e. moves, corrections, and substitution of words) 
necessary to turn the MT output into the chosen reference 
translation. However, the approach of choosing a priori a 
reference translation as the correct one has a major drawback 
in the sense that many correct translations of the same input 
sentence may exist, despite being completely different in 
terms of style. Yamashita et al. [24][25] studied the effects 
of machine translation on mutual understanding, which is 
affected by the asymmetry of machine translation since the 
sender of a message does not know how well it has been 
translated to the target language. A limitation of this study is 
that the researches employed picture description as the 
experimental tasks, thus focusing mostly on the difficulties 
arising when describing objects in machine translated 
discussions.  
 
 



 
Figure 1.  A screenshot of eConference showing instant messages automatically translated from English to Italian. 

 
Accurate computer translation is particularly appealing 

because it is quicker, more convenient, and less expensive 
than human translators are. Military coalitions are another 
example of global teams suffering from multi-cultural and 
multi-language bottlenecks. Odgen [28] and Jones & Parton 
[11] provide two examples of employing instant messaging 
tools augmented with automatic machine translation, for 
helping military coalition partners to communicate using 
their own language. Recently, the EU commission funded 
the MOLTO project (Multi-lingual Online Translation)3

Finally, aside from research prototypes or projects, also 
commercial tools that offer cross-language chat services are 
available, such as IBM Lotus Translation Services for 
Sametime

 with 
the goal of producing accurate machine-translations of the 
official documents and save the billion euro currently spent 
per year to translate them in the 23 official languages of the 
Union.  

4  and, lately, VoxOx 5

IV. METHOD 

, which provides cross-
language translations for most of the existing instant 
messaging networks. 

The goal of the simulation was to evaluate the feasibility of 
adopting a MT service in a cross-language, real time, text-
based chat. In particular, the simulation compared the 
performance (i.e. effectiveness and efficiency) of the two 
MT services described earlier, Apertium and Google 
Translate.  

                                                           
3 http://www.molto-project.eu 
4 http://www-01.ibm.com/software/lotus/sametime 
5 http://www.voxox.com 

While the effectiveness of a MT service relates to the 
quality of the translated output (i.e. accuracy), the efficiency 
relates to the amount of time necessary to translate the 
original input text (i.e. speed). Efficiency is fundamental in 
our scenario because if the use of MT involves a large 
amount of additional time, then it would break the real-time 
feature of a chat and hamper the synchronous 
communication. 

A. Evaluation of Translation Quality 
Evaluating the quality of a translation is an extremely 

subjective task and disagreements about evaluation 
methodology are rampant [1][23]. Nevertheless, evaluation 
is essential. In this study, we entailed four human raters to 
evaluate accurately each translation in terms of intelligibility, 
which is affected by grammatical errors, mistranslations and 
untranslated words [27].  

In our simulation, the raters assessed the intelligibility of 
translations assigning scores to output sentences produced by 
the two MT services. The scoring scheme adopted is a 4-
point Likert scale (see Table I), anchored with values 4 = 
completely unintelligible and 1 = completely intelligible. The 
scale, proposed in [16], seemed appropriate to our goal 
because it is not too fine grained (i.e. does not consist of too 
many values), it can be easily applied as descriptions are 
well defined (i.e. can be uniformly interpreted by 
evaluators), and there is no middle value (i.e. helps to avoid 
central tendency bias in ratings by forcing raters to judge the 
output as either intelligible or not) [10][18].  

Before the official scoring session was held, the raters 
participated in a training session in which they become 
acquainted with the scale. The raters were all master students  



TABLE I.  INTELLIGIBILITY SCALE [16]. 

Value Description 

1 
Completely intelligible 
The sentence is perfectly clear and intelligible. It is 
grammatical and reads like ordinary text. 

2 
Fairly intelligible 
The sentence is generally clear and intelligible. Despite some 
inaccuracies or infelicities of the sentence, one can understand 
(almost) immediately what it means. 

3 
Poorly intelligible 
The general idea of the sentence is intelligible only after 
considerable study. The sentence contains grammatical errors 
and/or poor word choices. 

4 
Completely unintelligible 
The sentence is unintelligible. Studying the meaning of the 
sentence is hopeless; even allowing for context, one feels that 
guessing would be too unreliable. 

 
completing their thesis project in our laboratory, at the 
University of Bari, and were selected among those who 
proved to have a good knowledge of English. 

 

B. Simulation 
The text corpus used to run the simulation is composed 

of chat logs, written in English and collected from five 
requirements workshops run during an experiment on the 
effects of text-based communication in distributed 
requirements engineering [5]. We used one workshop log 
(CL1) to train the raters, whereas the remaining four (CL2-
CL5) were employed as the test set during the simulation. 
Overall, the test set accounted for over 2.000 utterances to be 
translated by both MT services. Participants in each 
workshop ranged from five to eight undergraduate students 
attending a requirements engineering course at the 
University of Victoria, Canada. During a workshop the 
participants, either acting as a client or as a developer, had 
first to elicit the requirements specification of a web 
application (first session); then, they had to negotiate and 
reach closure on the previously collected requirements 
(second session). Table II contains an excerpt of the chat 
logs, showing the messages exchanged between two clients 
and two developers.  

As a first step, we modified our eConference MT plugin 
in order to process XML files containing the chat log entries. 
The plugin spawned several threads, one for each participant 
in the workshop, which processed the file and sent in chat 
messages. Each thread also received any message sent and 
then invoked the translation service one by one. Because all 
the messages in the logs are timestamped, we were able to 
send them with the same timing as in the real workshops, 
that is, we recreated a realistic condition similar to the one 
that would have happened if the real requirements 
workshops had relied on MT. Besides, we also put each 
translation service under the same stress condition in which 
messages sent at the same time would have caused the 
translation service to be invoked concurrently by each 
participant in the workshop.  

The simulation was executed on a box running Debian 
Linux, with a 2GHz Dual-Core AMD Opteron CPU, and 4 
GB of memory. Finally, in order to compare the performance 
of Apertium and Google Translate, the simulation was run 
twice on the same text corpus and on the same machine, 
once for each MT service. 

V. RESULTS 
Our analysis focused on evaluating both the effectiveness 

and the performance in order to evaluate, respectively, the 
goodness of translations in terms of intelligibility, and the 
extra amount of time taken to translate the sentences from 
the original language to the target language. 

A.  Translation Quality Results 
The four coders performed the rating separately. We 

measured the inter-rater agreement by computing the Fleiss’ 
Kappa index for multiple raters [9]. In particular, for the 
Apertium service, the Kappa index shows a fair agreement 
level (k=.37) [1]. Instead, .for Google Translate, the Kappa 
index measured shows a moderate agreement level between 
the raters (k=.47) [1]. 

In order to identify differences in the quality of 
translation produced by the two MT services, as perceived 
by the raters, we first evaluated how many sentences were 
evaluated as intelligible (i.e. belonging to categories 1 and 2) 
and unintelligible (i.e. belonging to categories 3 and 4). 
Figure 2 shows that, for Google Translate, over a half of the 
whole test suite (2053 sentences) was judged intelligible 
(63.3%). Conversely, for Apertium over the 62.2% of the 
translated sentences was judged unintelligible. In addition, 
we found that the mean and median ratings for Google 
Translate were, respectively, 2.17 and 2.0. Instead, for 
Apertium the mean and median ratings were 2.8 and 3.5, 
respectively.  

Afterwards, we performed the paired t-test for two 
related samples. We summed the ratings from each rater for 
each translated utterances, thus obtaining N=2053 summed 
scores for each MT service. The summed scores obtained 
ranged between 4 (best) and 16 (worst). The paired t-test 
result, shown in Table III, revealed a statistically significant 
difference (p=.00) in favor of Google Translate, which thus 
was judged to produce more accurate translations than 
Apertium. 

TABLE II.  AN EXCERPT FROM THE CHAT LOGS. 

Student Message 

Client 1 we don't necessarily need the conversations to be stored in a 
DB... 

Client 2 We also need application sharing. IE - letting someone else 
access a single window on my computer. 

Client 1 and yeah, we do need application sharing 

Dev 1 Ok 

Dev 1 we have questions about that so just wanted an overview 
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Figure 2.  Percentage of intelligible vs. unitelligible ratings. 

B. Time performance results. 
Each data point in the following two figures was obtained 

as an average measure of 256 repeated translation requests. 
Figure 3 shows that Apertium response times are lower 

than those of Google Translate are. In fact, in the worst case, 
Apertium took less than 30 ms to complete, on the average, 
the repeated translation requests, whereas Google service 
took twice the amount of time (over 70 ms). Conversely, the 
graph of response times shows that Google Translate 
performance does not depend on the length of the sentences, 
as in the case of Apertium. 

Figure 4 plots the response times of the two services 
when completing concurrent translation requests from an 
increasing number (from 1 to 8) of clients. The data points 
were again collected as an average measure of 256 repeated 
requests for translating the longest sentences available in the 

whole data set (362 characters). The graph shows that 
Apertium performances are better when the numbers of 
concurrent requests are low (less than 4), whereas Google 
Translate is better able to cope with a growing number of 
concurrent clients.  

VI. DISCUSSION 
The two main results of our work are the assessment of 

the translation quality (i.e. accuracy) and the performance 
(i.e. speed) of the Google Translate and Apertium services.  

With respect to the performance test, we found good time 
responses for both services, which also proved to scale up 
well as the number of clients – i.e. concurrent requests – and 
the length of sentences increase (see Figure 3 and 4, 
respectively). However, the time performance of Apertium 
(less than 30 ms in the worst case) is better than Google 
(around 70s ms in the worst case). This is because, Google 
service is publicly available (i.e. other people might be using 
it at the same time of our tests) and thus the load of requests 
to the well-known Google Translate service was reasonably 
much higher than that served by Apertium, which run instead 
as a private service. Nevertheless, we noticed that Apertium 
response time increases with the length of sentence, while 
Google Translate performance tends to be rather stable, 
independently of sentence length and concurrent requests. 

 
 

 

TABLE III.  RESULTS FROM THE PAIRED T-TEST. 

 Mean Std. Dv. N Diff. Std. Dv. Diff. t df p 

Apertium 11.19 4.06 
2053 -2.58 4.23 -27.06 2052 0.00 

Google Translate 8.66 4.13 

 
 
 

  
Figure 3.  A comparison between the amount of time (in ms) taken by 

Google Translate and Apertium services to translate sentences of growing 
lengths. 

Figure 4.  A comparison between the amount of time (in ms) taken by 
Google Translate and Apertium services to complete concurrent requests 

from an increasing number of clients. 

 



With respect to the translation quality, we employed four 
raters to judge the intelligibility of the output produced by 
the two services. We then evaluated the inter-rater agreement 
by computing multiple Kappa index, which was measured 
0.36 for Apertium and 0.46 for Google Translate. The fair to 
moderate Kappa values measured can be partially explained 
by having employed non-bilingual raters for the evaluation 
of translations quality. In fact, we employed four Italian 
master students who are not native English speakers, 
although knowledgeable in software engineering and thus 
fully able to understand the context of conversations. Hence, 
possible disparities in raters’ language skill can probably 
account for the moderate agreement levels achieved. 

Besides, Google Translate was found to produce 
significantly more accurate (i.e. more intelligible) 
translations than Apertium. On the average, a Google 
Translate translation is rated 2.17 (median 2.0), with over the 
63% of translations falling into category 1 or 2, that is, 
judged to be fully intelligible by the raters. Conversely, 
Apertium average translation quality is rated 2.8 (median 
3.5), with most of the translation produced (~63%) falling in 
category 3 or 4, that is, judged to be partially or completely 
unintelligible by the raters. 

We identified a couple of reasons why Apertium 
achieved lower intelligibility ratings than Google. The first 
reason is the low quality of the translation rules defined in 
the English-Italian pair. We tried to address this issue using 
one of the five chat logs available – the one not used by 
raters for the evaluation – to add linguistic knowledge to the 
EN-IT pair6

Despite achieving better intelligibility results, Google 
Translates suffers from at least a couple of drawbacks. The 
first one is due to the statistical approach used, which 
prevents Google Translate from being improved, as in the 
case of rule-based systems, to which specific domain 
knowledge can be added in form of new dictionaries and 
translation rules. The second drawback is a limitation that 
raises privacy concerns. When using Google Translate, one 
cannot install the MT service on a company’s private server, 
meaning that private data must be sent to Google servers for 
being translated.  

 in Apertium by adding missing rules and words. 
Nevertheless, intelligibility ratings were not only lower than 
those produced by Google Translate, but also worse than 
those obtained using Apertium with the full-fledged English-
Spanish pair, which we evaluated informally. The second 
one is that Google service was better able to cope with short, 
slang forms, typical of text-based chats, such as “hes” 
instead of “he’s”, “dont" instead of “don’t”, which instead, 
Apertium proved not to manage well. 

Overall, these results suggest that machine translation 
services can be helpfully employed in multicultural context 
to reduce language disparity issues in a quick and convenient 
way. Obviously, the generalizability of the results from our 
study is limited by being a simulation. We identified at least 
three major threats.  

First, our simulation involved only one-way translations, 
that is, utterances were only translated from English to 
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Italian and not vice versa. Instead, a more realistic 
experiment would involve two-way translations between 
cross-language groups. One could reasonably argue that two-
way translation would increase intelligibility issues. One way 
to overcome this limitation, is studying how machine 
translation affect the establishment of common ground, that 
is the mutual knowledge that people involved in a discussion 
share and the awareness of it. In fact, mutual knowledge and 
its awareness are both affected by the asymmetry of machine 
translation, which prevents the sender of a message to know 
whether it has been translated well and, consequently, 
accepted by the receiver [25]. 

Second, we evaluated translation quality exclusively in 
terms of intelligibility, that is, the raters evaluated the 
comprehensibility of a sentence in the context provided by 
the history of all previous messages. When evaluating 
translation quality other dimensions are often taken into 
account, such as style (or fluency), and accuracy (or fidelity). 
However, as Hutchins and Somers noted [16], style matters 
only when a translation is intelligible; furthermore accuracy 
scores are often closely related to the intelligibility scores 
since high intelligibility normally means high accuracy. On 
the contrary, it is more efficient to analyze just those cases 
where the output is rated incomprehensible, leading one to 
suppose something has gone wrong. 

Finally, our study worked on the sentence as the unit of 
analysis and, consequently, the raters judged intelligibility of 
sentences according to the context, whereas in group-
collaboration task performance is paramount. Hence, even 
though results from our simulation are somewhat 
encouraging, we can by no means hypothesize whether the 
translation quality of either MT service would be good 
enough to allow participants to complete a group task – in 
our scenario, allow stakeholders to define and negotiate 
software requirements for a small web application. Previous 
works in the field of MT (e.g. [27]) show that although 
employing machine translation does not prevent task 
completion, it considerably slows it down. Nevertheless, 
these works compared the interaction performance of 
machine-translated groups to those of standard groups on 
puzzle-like tasks execution. One can reasonably argue that 
greater concerns would arise during the execution of 
requirements engineering group tasks. Requirements 
engineering activities, such as elicitation and negotiation 
workshops, are complex, communication-intensive tasks that 
require specialized knowledge and techniques to be applied. 
As such, during their execution low quality translations 
could worsen or even cause misunderstandings, which in 
turns might generate defects in the requirements 
specifications.  

 

VII. CONCLUSIONS & FUTURE WORK 
Global software projects are affected by the combination 

of geographical, temporal, and cultural distance [7].  While 
there is a growing literature about the effects of distance and 
time differences, we know little about how to handle 
intercultural factors [20]. In fact, work that takes place over 
long distances means that communication will often involve 



distant cultures, with different languages and communication 
styles exacerbating communication problems [12]. 

To date research efforts have mostly focused on the 
organizational (i.e. processes and coordination) aspects of 
globally distributed labor [13], as well as on computer-
mediated communication [8] and tools [32], but little on 
culture per se. In fact, only in the last decade research started 
to investigate on the specific issues of cultural difference in 
globally distributed projects [7][21][29]. 

In this paper we explored the idea of applying automatic, 
cross-language translation to communication-intensive 
activities, such as distributed requirements engineering, we 
compared two successful MT services, which entail two 
completely opposite approaches, namely rule-based 
(Apertium) and corpus-based (Google Translate).  

In our simulation, we used chat logs collect from five 
distributed requirements engineering sessions. The logs were 
first translated from English to Italian and then translation 
quality was evaluated by multiple human raters in terms of 
intelligibility. Our findings show Google Translate produces 
significantly more intelligible translations than Apertium. 
Besides, we also tested the performance in terms of the 
amount of time requested to translate sentences with multiple 
concurrent requests to the MT services. The rather small 
amount of extra time necessary to translate concurrently chat 
messages (about 70 ms on in the worst case observed) shows 
that state-of-the-art MT services can be embedded into 
synchronous text-based chat without disrupting real-time 
interaction. 

As future work we intend to set up a controlled 
experiment rather than a simulation, so that: (1) both cross-
language groups and same language groups of participants 
can be compared while interacting to complete a knowledge- 
and communication-intensive task, such as a requirements 
elicitation or negotiation workshop; (2) a MT service is used 
for two way-translations; (3) language pairs other than 
English-Italian are used, which are more relevant to the 
global software development scenario (e.g. English-
Portuguese). 
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